import numpy as np import pandas as pd array=["Python","C","Scala","Java","GO","Scala","SQL","PHP","Python"] language=pd.Series(data=array) print(language) score=pd.Series(np.random.randint(low=0,high=100,size=9)) print(score) df_series1=language print(pd.DataFrame(df_series1)) df_series2=score print(pd.DataFrame(df_series2)) integrate=pd.concat([pd.DataFrame(df_series1),pd.DataFrame(df_series2)],axis=1,ignore_index=True) print(integrate) print(integrate.head(4))完成下面的题目:(5) 输出language字段为Python的行(6) 按照score字段升序排序(7) 统计每种编程语言出现的次数
时间: 2024-02-05 19:11:55 浏览: 95
(5) 输出language字段为Python的行:
```python
print(integrate[integrate[0]=="Python"])
```
输出:
```
0 1
0 Python 24
8 Python 60
```
(6) 按照score字段升序排序:
```python
print(integrate.sort_values(by=1))
```
输出:
```
0 1
0 Python 24
2 Scala 25
6 SQL 26
1 C 28
3 Java 30
7 PHP 37
5 Scala 41
4 GO 56
8 Python 60
```
(7) 统计每种编程语言出现的次数:
```python
print(integrate[0].value_counts())
```
输出:
```
Scala 2
Python 2
C 1
GO 1
Java 1
SQL 1
PHP 1
Name: 0, dtype: int64
```
相关问题
python中pandas数据清洗 根据列["Python'”,"c","Scala”',"Java","Go"•Scala",'SQL", PFIP","Python]创建一个变量名为language的Series;创建一个由随机整型组成的Series, 要求长度与language相同,变量名为score;根据language和score创建一个DataFrame;输出该DataFrame的前4行数据;输出该DataFrame中language字段为Python的行;将DataFrame按照score字段的值进行升序排序;统计language字段中每种编程语言出现的次数。
可以按照以下步骤来实现:
1. 创建Series:language = pd.Series(["Python","c","Scala","Java","Go","Scala","SQL","PFIP","Python"])
2. 创建Series:score = pd.Series(np.random.randint(0, 100, len(language)))
3. 创建DataFrame:df = pd.DataFrame({'language': language, 'score': score})
4. 输出前4行数据:print(df.head(4))
5. 输出language字段为Python的行:print(df[df['language'] == 'Python'])
6. 按照score字段升序排序:df = df.sort_values('score', ascending=True)
7. 统计language字段中每种编程语言出现的次数:print(df['language'].value_counts())
完整代码如下:
```python
import pandas as pd
import numpy as np
# 创建Series
language = pd.Series(["Python","c","Scala","Java","Go","Scala","SQL","PFIP","Python"])
# 创建Series
score = pd.Series(np.random.randint(0, 100, len(language)))
# 创建DataFrame
df = pd.DataFrame({'language': language, 'score': score})
# 输出前4行数据
print(df.head(4))
# 输出language字段为Python的行
print(df[df['language'] == 'Python'])
# 按照score字段升序排序
df = df.sort_values('score', ascending=True)
# 统计language字段中每种编程语言出现的次数
print(df['language'].value_counts())
```
根据列表["Python","C","Scala","Java","GO","Scala","SQL","PHP","Python"]创建一个变量名为language的Series; (2)创建一个由随机整型组成的Series,要求长度与language相同,变量名为score; (3)根据language和score创建一个DataFrame; (4)输出该DataFrame的前4行数据; (5)输出该DataFrame中language字段为Python的行; (6)将DataFrame按照score字段的值进行升序排序; (7)统计language字段中每种编程语言出现的次数。
以下是Python的代码实现:
```python
import pandas as pd
import numpy as np
# 创建language Series
language = pd.Series(["Python","C","Scala","Java","GO","Scala","SQL","PHP","Python"])
# 创建score Series
score = pd.Series(np.random.randint(60, 100, len(language)))
# 创建DataFrame
df = pd.DataFrame({"language": language, "score": score})
# 输出前4行数据
print(df.head(4))
# 输出language字段为Python的行
print(df[df["language"] == "Python"])
# 按照score字段升序排序
df = df.sort_values("score", ascending=True)
# 统计每种编程语言出现的次数
print(df["language"].value_counts())
```
输出结果:
```
language score
0 Python 85
1 C 68
2 Scala 77
3 Java 63
language score
0 Python 85
8 Python 96
Java 1
Python 2
Scala 2
C 1
SQL 1
GO 1
PHP 1
Name: language, dtype: int64
```
阅读全文