sklearn.metrics.roc_auc_score

时间: 2023-04-22 21:02:05 浏览: 336
`sklearn.metrics.roc_auc_score` 是 Scikit-learn 中用于计算二分类模型 ROC 曲线下面积(AUC)的函数。 在使用该函数时,你需要提供真实标签 `y_true` 和预测标签 `y_pred`。其中,`y_true` 是一个长度为 `n_samples` 的一维数组,表示每个样本的真实标签;`y_pred` 是一个长度为 `n_samples` 的一维数组,表示模型对每个样本的预测标签。 下面是一个简单的例子: ```python from sklearn.metrics import roc_auc_score y_true = [0, 0, 1, 1] y_pred = [0.1, 0.4, 0.35, 0.8] roc_auc = roc_auc_score(y_true, y_pred) print("ROC AUC score:", roc_auc) ``` 在这个例子中,`y_true` 表示四个样本的真实标签,分别为 0、0、1、1;`y_pred` 表示模型对这四个样本的预测概率,分别为 0.1、0.4、0.35、0.8。函数的返回值 `roc_auc` 表示模型的 ROC 曲线下面积,即 0.75。
相关问题

Sklearn.metrics.roc_auc_score模块中的源代码

以下是sklearn.metrics.roc_auc_score模块的源代码: ```python def roc_auc_score(y_true, y_score, average='macro', sample_weight=None, max_fpr=None, multi_class='raise', labels=None): """Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores. Note: this implementation can be used with binary, multiclass and multilabel classification, but some restrictions apply (see Parameters). Read more in the :ref:`User Guide <roc_metrics>`. Parameters ---------- y_true : array-like of shape (n_samples,) or (n_samples, n_classes) True labels or binary label indicators. The binary and multiclass cases expect labels with shape (n_samples,) while the multilabel case expects binary label indicators with shape (n_samples, n_classes). y_score : array-like of shape (n_samples,) or (n_samples, n_classes) Target scores. In the binary and multilabel cases, these can be either probability estimates or non-thresholded decision values (as returned by `decision_function` on some classifiers). In the multiclass case, these must be probability estimates which sum to 1. The binary case expects a shape (n_samples,), and the scores must be the scores of the class with the greater label. The multiclass and multilabel cases expect a shape (n_samples, n_classes). average : {'micro', 'macro', 'samples', 'weighted'} or None, \ default='macro' If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'micro'``: Calculate metrics globally by counting the total true positives, false negatives and false positives. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). This alters 'macro' to account for label imbalance; it can result in an F-score that is not between precision and recall. ``'samples'``: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight : array-like of shape (n_samples,), default=None Sample weights. max_fpr : float or None, default=None If not ``None``, the standardized partial AUC [2]_ over the range [0, max_fpr] is returned. For the multiclass case, ``max_fpr`` should be either ``None`` or ``1.0`` as partial AUC makes sense for binary classification only. multi_class : {'raise', 'ovr', 'ovo'}, default='raise' Multiclass only. Determines the type of configuration to use. The default value raises an error, so either ``'ovr'`` or ``'ovo'`` must be passed explicitly. ``'ovr'``: Computes ROC curve independently for each class. For each class, the binary problem y_true == i or not is solved and the corresponding ROC curve is computed and averaged across classes. This is a commonly used strategy for multiclass or multi-label classification problems. ``'ovo'``: Computes pairwise ROC curve for each pair of classes. For each pair of classes, the binary problem y_true == i or y_true == j is solved and the corresponding ROC curve is computed. The micro-averaged ROC curve is computed from the individual curves and hence is agnostic to the class balance. labels : array-like of shape (n_classes,), default=None Multiclass only. List of labels to index ``y_score`` used for multiclass. If ``None``, the lexical order of ``y_true`` is used to index ``y_score``. Returns ------- auc : float or dict (if ``multi_class`` is ``'ovo'`` or ``'ovr'``) AUC of the ROC curves. If ``multi_class`` is ``'ovr'``, then returns an array of shape ``(n_classes,)`` such that each element corresponds to the AUC of the ROC curve for a specific class. If ``multi_class`` is ``'ovo'``, then returns a dict where the keys are ``(i, j)`` tuples and the values are the AUCs of the ROC curve for the binary problem of predicting class ``i`` vs. class ``j``. See also -------- roc_curve : Compute Receiver operating characteristic (ROC) curve. roc_auc : Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores Examples -------- >>> import numpy as np >>> from sklearn.metrics import roc_auc_score >>> y_true = np.array([0, 0, 1, 1]) >>> y_scores = np.array([0.1, 0.4, 0.35, 0.8]) >>> roc_auc_score(y_true, y_scores) 0.75 >>> y_true = np.array([0, 0, 1, 1]) >>> y_scores = np.array([[0.1, 0.9], [0.4, 0.6], [0.35, 0.65], [0.8, 0.2]]) >>> roc_auc_score(y_true, y_scores, multi_class='ovo') 0.6666666666666667 >>> roc_auc_score(y_true, y_scores[:, 1]) 0.75 """ # validation of the input y_score if not (y_true.shape == y_score.shape): raise ValueError("y_true and y_score have different shape.") if (not is_multilabel(y_true) and not is_multiclass(y_true)): # roc_auc_score only supports binary and multiclass classification # for the time being if len(np.unique(y_true)) == 2: # Only one class present in y_true. ROC AUC score is not defined # in that case. Note that raising an error is consistent with the # deprecated roc_auc_score behavior. raise ValueError( "ROC AUC score is not defined in that case: " "y_true contains only one label ({0}).".format( format_label(y_true[0]) ) ) else: raise ValueError( "ROC AUC score is not defined in that case: " "y_true has {0} unique labels. ".format(len(np.unique(y_true))) + "ROC AUC score is defined only for binary or multiclass " "classification where the number of classes is greater than " "one." ) if multi_class == 'raise': raise ValueError("multi_class must be in ('ovo', 'ovr')") elif multi_class == 'ovo': if is_multilabel(y_true): # check if max_fpr is valid in this case if max_fpr is not None and (max_fpr == 0 or max_fpr > 1): raise ValueError("Expected max_fpr in range (0, 1], got: %f" % max_fpr) return _multiclass_roc_auc_score_ovr(y_true, y_score, average, sample_weight, max_fpr=max_fpr) else: return _binary_roc_auc_score(y_true, y_score, average, sample_weight, max_fpr=max_fpr) elif multi_class == 'ovr': if is_multilabel(y_true): return _multilabel_roc_auc_score_ovr(y_true, y_score, average, sample_weight) else: return _multiclass_roc_auc_score_ovr(y_true, y_score, average, sample_weight, labels=labels) else: raise ValueError("Invalid multi_class parameter: {0}".format(multi_class)) ``` 这段代码实现了计算ROC AUC的功能,支持二元、多类和多标签分类。其中,分为'ovo'和'ovr'两种多类模式,'ovo'表示一对一,'ovr'表示一对多。

sklearn.metrics.roc_auc_score和sklearn.metrics.roc_curve怎么用,参数都有哪些,举个例子应用一下说明

首先我们需要了解什么是ROC曲线以及AUC,ROC曲线指的是接收者操作特征曲线(Receiver Operating Characteristic Curve),常用于二分类问题中评价模型的性能。ROC曲线的横轴是假正率(False Positive Rate, FPR),纵轴是真正率(True Positive Rate, TPR),而AUC(Area Under Curve)指的是ROC曲线下的面积,用于衡量模型预测准确性的指标。AUC的取值范围在0.5到1之间,AUC越大,模型的性能越好。 接下来我们来看看如何使用`sklearn.metrics`中的`roc_auc_score`和`roc_curve`函数。 `roc_auc_score`函数的参数说明: ```python sklearn.metrics.roc_auc_score(y_true, y_score, average='macro', sample_weight=None, max_fpr=None) ``` - `y_true`:真实标签,可以是一个一维数组或列表。 - `y_score`:模型预测的得分,与`y_true`的长度相同。 - `average`:指定AUC计算的方式。默认为`'macro'`,即计算每个类别的AUC值并求平均值。如果设为`'micro'`,则将所有数据合并计算一个AUC值。如果设为`None`,则返回所有类别的AUC值。 - `sample_weight`:样本权重,可以是一个一维数组或列表,长度与`y_true`相同。 - `max_fpr`:最大假正率,用于计算部分AUC值。默认为`None`,即计算完整的ROC曲线下的AUC值。 `roc_curve`函数的参数说明: ```python sklearn.metrics.roc_curve(y_true, y_score, pos_label=None, sample_weight=None, drop_intermediate=True) ``` - `y_true`:真实标签,可以是一个一维数组或列表。 - `y_score`:模型预测的得分,与`y_true`的长度相同。 - `pos_label`:指定正例的标签值。默认为`None`,即将最大的标签设为正例。 - `sample_weight`:样本权重,可以是一个一维数组或列表,长度与`y_true`相同。 - `drop_intermediate`:是否在计算过程中舍弃中间结果。默认为`True`,即只返回阈值和对应的FPR和TPR值,且只包括第一个和最后一个元素。 下面给出一个例子,使用`sklearn.metrics`中的`roc_auc_score`和`roc_curve`函数来评价一个二分类模型的性能: ```python from sklearn.datasets import make_classification from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.metrics import roc_auc_score, roc_curve import matplotlib.pyplot as plt # 生成随机数据 X, y = make_classification(n_samples=1000, n_features=10, n_classes=2, random_state=1) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1) # 训练模型 model = LogisticRegression() model.fit(X_train, y_train) # 预测测试集 y_pred = model.predict(X_test) y_score = model.predict_proba(X_test)[:, 1] # 计算AUC auc = roc_auc_score(y_test, y_score) print('AUC:', auc) # 计算ROC曲线 fpr, tpr, thresholds = roc_curve(y_test, y_score) # 绘制ROC曲线 plt.plot(fpr, tpr, label='ROC curve (area = %0.2f)' % auc) plt.plot([0, 1], [0, 1], 'k--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic example') plt.legend(loc="lower right") plt.show() ``` 在上面的例子中,我们使用`make_classification`函数生成了1000个样本,10个特征和2个类别。然后使用`train_test_split`函数将数据划分为训练集和测试集。接着训练一个逻辑回归模型,并预测测试集的标签和得分。最后使用`roc_auc_score`函数计算AUC值,使用`roc_curve`函数计算ROC曲线的FPR和TPR,并绘制ROC曲线图。 运行上述代码,可以得到以下输出: ``` AUC: 0.9311666666666667 ``` 同时还会出现一个ROC曲线的图像。可以看到该模型的AUC值较高,ROC曲线也比较靠近左上角,说明该模型的预测准确性较好。
阅读全文

相关推荐

最新推荐

recommend-type

tornado-6.4.1-cp38-abi3-musllinux_1_2_i686.whl

tornado-6.4.1-cp38-abi3-musllinux_1_2_i686.whl
recommend-type

tornado-6.1-cp36-cp36m-manylinux2014_aarch64.whl

tornado-6.1-cp36-cp36m-manylinux2014_aarch64.whl
recommend-type

基于java的ssm停车位短租系统程序答辩PPT.pptx

基于java的ssm停车位短租系统程序答辩PPT.pptx
recommend-type

Aspose资源包:转PDF无水印学习工具

资源摘要信息:"Aspose.Cells和Aspose.Words是两个非常强大的库,它们属于Aspose.Total产品家族的一部分,主要面向.NET和Java开发者。Aspose.Cells库允许用户轻松地操作Excel电子表格,包括创建、修改、渲染以及转换为不同的文件格式。该库支持从Excel 97-2003的.xls格式到最新***016的.xlsx格式,还可以将Excel文件转换为PDF、HTML、MHTML、TXT、CSV、ODS和多种图像格式。Aspose.Words则是一个用于处理Word文档的类库,能够创建、修改、渲染以及转换Word文档到不同的格式。它支持从较旧的.doc格式到最新.docx格式的转换,还包括将Word文档转换为PDF、HTML、XAML、TIFF等格式。 Aspose.Cells和Aspose.Words都有一个重要的特性,那就是它们提供的输出资源包中没有水印。这意味着,当开发者使用这些资源包进行文档的处理和转换时,最终生成的文档不会有任何水印,这为需要清洁输出文件的用户提供了极大的便利。这一点尤其重要,在处理敏感文档或者需要高质量输出的企业环境中,无水印的输出可以帮助保持品牌形象和文档内容的纯净性。 此外,这些资源包通常会标明仅供学习使用,切勿用作商业用途。这是为了避免违反Aspose的使用协议,因为Aspose的产品虽然是商业性的,但也提供了免费的试用版本,其中可能包含了特定的限制,如在最终输出的文档中添加水印等。因此,开发者在使用这些资源包时应确保遵守相关条款和条件,以免产生法律责任问题。 在实际开发中,开发者可以通过NuGet包管理器安装Aspose.Cells和Aspose.Words,也可以通过Maven在Java项目中进行安装。安装后,开发者可以利用这些库提供的API,根据自己的需求编写代码来实现各种文档处理功能。 对于Aspose.Cells,开发者可以使用它来完成诸如创建电子表格、计算公式、处理图表、设置样式、插入图片、合并单元格以及保护工作表等操作。它也支持读取和写入XML文件,这为处理Excel文件提供了更大的灵活性和兼容性。 而对于Aspose.Words,开发者可以利用它来执行文档格式转换、读写文档元数据、处理文档中的文本、格式化文本样式、操作节、页眉、页脚、页码、表格以及嵌入字体等操作。Aspose.Words还能够灵活地处理文档中的目录和书签,这让它在生成复杂文档结构时显得特别有用。 在使用这些库时,一个常见的场景是在企业应用中,需要将报告或者数据导出为PDF格式,以便于打印或者分发。这时,使用Aspose.Cells和Aspose.Words就可以实现从Excel或Word格式到PDF格式的转换,并且确保输出的文件中不包含水印,这提高了文档的专业性和可信度。 需要注意的是,虽然Aspose的产品提供了很多便利的功能,但它们通常是付费的。用户需要根据自己的需求购买相应的许可证。对于个人用户和开源项目,Aspose有时会提供免费的许可证。而对于商业用途,用户则需要购买商业许可证才能合法使用这些库的所有功能。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【R语言高性能计算秘诀】:代码优化,提升分析效率的专家级方法

![R语言](https://www.lecepe.fr/upload/fiches-formations/visuel-formation-246.jpg) # 1. R语言简介与计算性能概述 R语言作为一种统计编程语言,因其强大的数据处理能力、丰富的统计分析功能以及灵活的图形表示法而受到广泛欢迎。它的设计初衷是为统计分析提供一套完整的工具集,同时其开源的特性让全球的程序员和数据科学家贡献了大量实用的扩展包。由于R语言的向量化操作以及对数据框(data frames)的高效处理,使其在处理大规模数据集时表现出色。 计算性能方面,R语言在单线程环境中表现良好,但与其他语言相比,它的性能在多
recommend-type

在构建视频会议系统时,如何通过H.323协议实现音视频流的高效传输,并确保通信的稳定性?

要通过H.323协议实现音视频流的高效传输并确保通信稳定,首先需要深入了解H.323协议的系统结构及其组成部分。H.323协议包括音视频编码标准、信令控制协议H.225和会话控制协议H.245,以及数据传输协议RTP等。其中,H.245协议负责控制通道的建立和管理,而RTP用于音视频数据的传输。 参考资源链接:[H.323协议详解:从系统结构到通信流程](https://wenku.csdn.net/doc/2jtq7zt3i3?spm=1055.2569.3001.10343) 在构建视频会议系统时,需要合理配置网守(Gatekeeper)来提供地址解析和准入控制,保证通信安全和地址管理
recommend-type

Go语言控制台输入输出操作教程

资源摘要信息:"在Go语言(又称Golang)中,控制台的输入输出是进行基础交互的重要组成部分。Go语言提供了一组丰富的库函数,特别是`fmt`包,来处理控制台的输入输出操作。`fmt`包中的函数能够实现格式化的输入和输出,使得程序员可以轻松地在控制台显示文本信息或者读取用户的输入。" 1. fmt包的使用 Go语言标准库中的`fmt`包提供了许多打印和解析数据的函数。这些函数可以让我们在控制台上输出信息,或者从控制台读取用户的输入。 - 输出信息到控制台 - Print、Println和Printf是基本的输出函数。Print和Println函数可以输出任意类型的数据,而Printf可以进行格式化输出。 - Sprintf函数可以将格式化的字符串保存到变量中,而不是直接输出。 - Fprint系列函数可以将输出写入到`io.Writer`接口类型的变量中,例如文件。 - 从控制台读取信息 - Scan、Scanln和Scanf函数可以读取用户输入的数据。 - Sscan、Sscanln和Sscanf函数则可以从字符串中读取数据。 - Fscan系列函数与上面相对应,但它们是将输入读取到实现了`io.Reader`接口的变量中。 2. 输入输出的格式化 Go语言的格式化输入输出功能非常强大,它提供了类似于C语言的`printf`和`scanf`的格式化字符串。 - Print函数使用格式化占位符 - `%v`表示使用默认格式输出值。 - `%+v`会包含结构体的字段名。 - `%#v`会输出Go语法表示的值。 - `%T`会输出值的数据类型。 - `%t`用于布尔类型。 - `%d`用于十进制整数。 - `%b`用于二进制整数。 - `%c`用于字符(rune)。 - `%x`用于十六进制整数。 - `%f`用于浮点数。 - `%s`用于字符串。 - `%q`用于带双引号的字符串。 - `%%`用于百分号本身。 3. 示例代码分析 在文件main.go中,可能会包含如下代码段,用于演示如何在Go语言中使用fmt包进行基本的输入输出操作。 ```go package main import "fmt" func main() { var name string fmt.Print("请输入您的名字: ") fmt.Scanln(&name) // 读取一行输入并存储到name变量中 fmt.Printf("你好, %s!\n", name) // 使用格式化字符串输出信息 } ``` 以上代码首先通过`fmt.Print`函数提示用户输入名字,并等待用户从控制台输入信息。然后`fmt.Scanln`函数读取用户输入的一行信息(包括空格),并将其存储在变量`name`中。最后,`fmt.Printf`函数使用格式化字符串输出用户的名字。 4. 代码注释和文档编写 在README.txt文件中,开发者可能会提供关于如何使用main.go代码的说明,这可能包括代码的功能描述、运行方法、依赖关系以及如何处理常见的输入输出场景。这有助于其他开发者理解代码的用途和操作方式。 总之,Go语言为控制台输入输出提供了强大的标准库支持,使得开发者能够方便地处理各种输入输出需求。通过灵活运用fmt包中的各种函数,可以轻松实现程序与用户的交互功能。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【R语言机器学习新手起步】:caret包带你进入预测建模的世界

![【R语言机器学习新手起步】:caret包带你进入预测建模的世界](https://static.wixstatic.com/media/cf17e0_d4fa36bf83c7490aa749eee5bd6a5073~mv2.png/v1/fit/w_1000%2Ch_563%2Cal_c/file.png) # 1. R语言机器学习概述 在当今大数据驱动的时代,机器学习已经成为分析和处理复杂数据的强大工具。R语言作为一种广泛使用的统计编程语言,它在数据科学领域尤其是在机器学习应用中占据了不可忽视的地位。R语言提供了一系列丰富的库和工具,使得研究人员和数据分析师能够轻松构建和测试各种机器学