sklearn.metrics.roc_auc_score
时间: 2023-04-22 21:02:05 浏览: 353
main_roc_python_AUC_PR曲线_ROC曲线_
5星 · 资源好评率100%
`sklearn.metrics.roc_auc_score` 是 Scikit-learn 中用于计算二分类模型 ROC 曲线下面积(AUC)的函数。
在使用该函数时,你需要提供真实标签 `y_true` 和预测标签 `y_pred`。其中,`y_true` 是一个长度为 `n_samples` 的一维数组,表示每个样本的真实标签;`y_pred` 是一个长度为 `n_samples` 的一维数组,表示模型对每个样本的预测标签。
下面是一个简单的例子:
```python
from sklearn.metrics import roc_auc_score
y_true = [0, 0, 1, 1]
y_pred = [0.1, 0.4, 0.35, 0.8]
roc_auc = roc_auc_score(y_true, y_pred)
print("ROC AUC score:", roc_auc)
```
在这个例子中,`y_true` 表示四个样本的真实标签,分别为 0、0、1、1;`y_pred` 表示模型对这四个样本的预测概率,分别为 0.1、0.4、0.35、0.8。函数的返回值 `roc_auc` 表示模型的 ROC 曲线下面积,即 0.75。
阅读全文