pyqt5与yolov7结合教程
时间: 2023-11-27 07:06:14 浏览: 253
将PyQt5和YOLOv7结合起来可以实现一个图像识别软件,以下是基本的教程:
1. 安装PyQt5和YOLOv7
确保你已经在系统中安装了PyQt5和YOLOv7。如果没有,可以通过以下命令进行安装:
```
pip install PyQt5
pip install yolov7
```
2. 创建PyQt5 GUI
使用PyQt5创建GUI界面,包括一个按钮和一个Image Label,用于显示图像。例如,我们可以创建一个名为`main.py`的Python脚本:
```python
from PyQt5.QtCore import Qt
from PyQt5.QtGui import QPixmap
from PyQt5.QtWidgets import QApplication, QWidget, QPushButton, QLabel, QVBoxLayout, QHBoxLayout, QFileDialog
import sys
class App(QWidget):
def __init__(self):
super().__init__()
self.title = 'YOLOv7 Object Detection'
self.left = 100
self.top = 100
self.width = 640
self.height = 480
self.initUI()
def initUI(self):
self.setWindowTitle(self.title)
self.setGeometry(self.left, self.top, self.width, self.height)
self.image_label = QLabel()
self.image_label.setAlignment(Qt.AlignCenter)
self.detect_button = QPushButton("Detect Objects")
self.detect_button.clicked.connect(self.detect_objects)
vbox = QVBoxLayout()
vbox.addWidget(self.image_label)
vbox.addWidget(self.detect_button)
hbox = QHBoxLayout()
hbox.addLayout(vbox)
self.setLayout(hbox)
def detect_objects(self):
filename, _ = QFileDialog.getOpenFileName(self, 'Open Image', '', 'Image files (*.jpg *.png *.bmp)')
if filename:
pixmap = QPixmap(filename)
self.image_label.setPixmap(pixmap)
if __name__ == '__main__':
app = QApplication(sys.argv)
ex = App()
ex.show()
sys.exit(app.exec_())
```
运行上述脚本,你将看到一个GUI窗口,其中包含一个按钮和一个空的Image Label。
3. 加载YOLOv7模型
使用YOLOv7模型进行图像识别需要加载模型文件和类别文件。在这个例子中,我们将使用预训练的YOLOv7模型和类别文件。可以在YOLOv7的GitHub页面上下载它们。
```python
import cv2
import numpy as np
from yolov7.yolov7 import YOLOv7
class ObjectDetector:
def __init__(self):
self.yolov7 = YOLOv7()
self.yolov7.load_weights('yolov7.pt')
self.classes = []
with open('coco.names', 'r') as f:
self.classes = [line.strip() for line in f.readlines()]
self.colors = np.random.uniform(0, 255, size=(len(self.classes), 3))
def detect(self, image_path):
image = cv2.imread(image_path)
boxes, confs, class_ids = self.yolov7.detect(image, 0.4, 0.6)
if len(boxes) > 0:
for i in range(len(boxes)):
color = self.colors[class_ids[i]]
x, y, w, h = boxes[i]
cv2.rectangle(image, (x, y), (x + w, y + h), color, 2)
cv2.putText(image, self.classes[class_ids[i]], (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
return image
```
4. 在GUI中显示识别结果
在GUI中显示图像和识别结果,我们需要将`ObjectDetector`类添加到`App`类中,并在`detect_objects`方法中调用它。
```python
class App(QWidget):
def __init__(self):
super().__init__()
self.title = 'YOLOv7 Object Detection'
self.left = 100
self.top = 100
self.width = 640
self.height = 480
self.detector = ObjectDetector()
self.initUI()
def initUI(self):
self.setWindowTitle(self.title)
self.setGeometry(self.left, self.top, self.width, self.height)
self.image_label = QLabel()
self.image_label.setAlignment(Qt.AlignCenter)
self.detect_button = QPushButton("Detect Objects")
self.detect_button.clicked.connect(self.detect_objects)
vbox = QVBoxLayout()
vbox.addWidget(self.image_label)
vbox.addWidget(self.detect_button)
hbox = QHBoxLayout()
hbox.addLayout(vbox)
self.setLayout(hbox)
def detect_objects(self):
filename, _ = QFileDialog.getOpenFileName(self, 'Open Image', '', 'Image files (*.jpg *.png *.bmp)')
if filename:
image = self.detector.detect(filename)
height, width, channel = image.shape
bytesPerLine = 3 * width
qImg = QImage(image.data, width, height, bytesPerLine, QImage.Format_RGB888)
pixmap = QPixmap(qImg)
self.image_label.setPixmap(pixmap)
```
在`detect_objects`方法中,我们首先调用`ObjectDetector.detect`方法来获取识别结果,然后将其转换为QImage,最后将QImage转换为QPixmap并设置为Image Label的图像。现在运行脚本,你将可以通过点击“Detect Objects”按钮来识别图像中的物体。
以上就是将PyQt5和YOLOv7结合使用的基本教程。当然,这只是一个简单的例子,你可以根据自己的需要来扩展它。
阅读全文