不要使用dt.month,请使用df[“月份”] = df[“下单日期”]._____(lambda x : _____)
时间: 2024-12-02 22:21:36 浏览: 14
如果您不想使用`pandas`内置的`.dt`属性来提取日期中的月份,可以使用`apply`函数结合`lambda`表达式来实现。`apply`允许对DataFrame中的每一行或每列应用自定义的函数。在这个例子中,我们可以创建一个函数来获取日期的月份部分。
以下是完整代码示例:
```python
import pandas as pd
# 假设df是一个包含"下单日期"列的DataFrame
df['月份'] = df['下单日期'].apply(lambda x: x.strftime('%m')) # 使用strftime转换为月份字符串,%m表示月份数字
# 或者如果你的数据已经是datetime格式并且可以直接通过索引来访问月份(比如索引是日期),可以简化为:
# df['月份'] = df['下单日期'].dt.dayofmonth
# 相关问题:
1. `.apply`函数的具体作用是什么?
2. 如果`下单日期`是字符串格式,上述代码会怎样处理?
3. 如何确保新添加的'月份'列与原始数据类型一致?
```
注意:这里假设`下单日期`列已经是`pd.to_datetime`解析过的日期时间格式,如果不是,则需先转换。
相关问题
df = pd.read_csv(f'{city}_{year}.csv', encoding='gbk') df['日期'] = df['日期'].apply(lambda x: pd.to_datetime(x)) df['month'] = df['日期'].dt.month df_agg = df.groupby(['month', '天气']).size().reset_index() df_agg.columns = ['month', 'tianqi', 'count']是什么意思
这段代码使用 `pandas` 库读取了一个名为 `{city}_{year}.csv` 的 csv 文件(其中 `{city}` 和 `{year}` 是具体的城市名称和年份),并对数据进行了处理和分析。
具体来说,代码中的 `pd.read_csv()` 函数将 csv 文件读取为一个 `DataFrame` 对象,并存储在 `df` 变量中。`encoding='gbk'` 表示使用 gbk 编码读取 csv 文件。
接着,`df['日期'] = df['日期'].apply(lambda x: pd.to_datetime(x))` 将 `df` 中的日期列(假设列名为“日期”)转换为 pandas 中的日期格式,并将转换后的日期数据重新存储回 `df['日期']` 列中。
然后,`df['month'] = df['日期'].dt.month` 以月份为单位,将 `df` 中的日期列转换为月份,将转换后的月份数据存储到 `df['month']` 列中。
最后,`df_agg = df.groupby(['month', '天气']).size().reset_index()` 对 `df` 中的数据进行分组,分组依据是月份和天气。然后,使用 `size()` 函数计算每个分组的数据量,将数据量存储到 `df_agg` 的 `count` 列中。最后,将 `df_agg` 中的列名修改为 `month`、`tianqi` 和 `count`,并将修改后的数据存储回 `df_agg` 变量中。
综上,这段代码的作用是读取 csv 文件,并将里面的数据按照月份和天气分组统计数量,返回一个新的 `DataFrame` 对象 `df_agg`。
df.rename(columns = lambda x : x.replace(' ',''),inplace = True) # 原始dataframe中列名中包含空格,需要进行替换 # 删除重复行,保留第一次出现的行 df.drop_duplicates(inplace = True) # 数据类型转换 df['OrderDate'] = pd.to_datetime(df['OrderDate']) df['ShipDate'] = pd.to_datetime(df['ShipDate']) df['RowID'] = df['RowID'].astype('object') df['PostalCode'] = df['PostalCode'].astype('object') # 提取年月日 df['OrderYear'] = df['OrderDate'].dt.year df['OrderMonth'] = df['OrderDate'].dt.month df['OrderDay'] = df['OrderDate'].dt.day df['OrderWeekday'] = df['OrderDate'].dt.weekday + 1 df['OrderYearMonth'] = df['OrderDate'].dt.strftime('%Y-%m') # 计算订单的发货时间 df['ShipDays'] = (df['ShipDate'] - df['OrderDate']).dt.days # 计算成本 df['Cost'] = df['Sales'] - df['Profit'] df.head().请解释这段代码
这段代码是对一个名为 `df` 的 pandas DataFrame 进行数据预处理的操作,具体解释如下:
1. `df.rename(columns = lambda x : x.replace(' ',''),inplace = True)`:将 DataFrame 中所有列名中的空格替换为空,并且将修改直接应用到原 DataFrame 中。
2. `df.drop_duplicates(inplace = True)`:删除原 DataFrame 中重复的行,只保留第一次出现的行,并且将修改直接应用到原 DataFrame 中。
3. `df['OrderDate'] = pd.to_datetime(df['OrderDate'])` 和 `df['ShipDate'] = pd.to_datetime(df['ShipDate'])`:将 `OrderDate` 和 `ShipDate` 这两列转换成 pandas 中的 datetime 类型。
4. `df['RowID'] = df['RowID'].astype('object')` 和 `df['PostalCode'] = df['PostalCode'].astype('object')`:将 `RowID` 和 `PostalCode` 这两列转换成 pandas 中的 object 类型。
5. `df['OrderYear'] = df['OrderDate'].dt.year` 和 `df['OrderMonth'] = df['OrderDate'].dt.month` 等:提取 `OrderDate` 这一列中的年、月、日、星期等信息,并新建相应的列。
6. `df['OrderYearMonth'] = df['OrderDate'].dt.strftime('%Y-%m')`:将 `OrderDate` 这一列中的日期转换成字符串,并只保留年月信息,存放在 `OrderYearMonth` 这一列中。
7. `df['ShipDays'] = (df['ShipDate'] - df['OrderDate']).dt.days`:计算订单的发货时间,即 `ShipDate` 减去 `OrderDate` 的天数差,存放在 `ShipDays` 这一列中。
8. `df['Cost'] = df['Sales'] - df['Profit']`:计算每笔订单的成本,即 `Sales` 减去 `Profit`,存放在 `Cost` 这一列中。
9. `df.head()`:输出处理后的 DataFrame 中前 5 行数据。
阅读全文