cifar10图像分类pytorch cnn
时间: 2023-04-22 14:02:14 浏览: 227
cifar10图像分类pytorch cnn是使用PyTorch深度学习框架实现的卷积神经网络模型,用于对cifar10数据集中的图像进行分类。该模型可以通过训练来学习图像的特征,并将其分类到正确的类别中。在训练过程中,模型会根据损失函数的反馈来不断调整权重和偏置,以提高分类准确率。最终,经过训练的模型可以对新的图像进行分类,并给出相应的预测结果。
相关问题
cifar10图像分类pytorch cnn的架构是什么
CIFAR-10图像分类的PyTorch CNN架构通常包含以下组件:
1. 卷积层(Convolutional Layer):用于提取图像的特征。
2. 激活函数(Activation Function):用于在卷积层后引入非线性。
3. 池化层(Pooling Layer):用于降低特征图的维度,提高计算效率。
4. 批量归一化(Batch Normalization):用于加速训练过程,提高模型鲁棒性。
5. Dropout层:用于减少过拟合。
6. 全连接层(Fully Connected Layer):用于将特征图映射到类别上。
7. Softmax层:用于将全连接层的输出映射到概率分布上。
具体的架构可以根据需求进行调整和优化,常用的包括LeNet、AlexNet、VGG、GoogLeNet、ResNet等。
CNN做cifar-10图像分类任务pytorch版本的代码
好的,这是使用PyTorch实现的CNN模型对CIFAR-10数据集进行图像分类的代码:
``` python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
# 定义超参数
num_epochs = 10
num_classes = 10
batch_size = 100
learning_rate = 0.001
# 加载CIFAR-10数据集
train_dataset = torchvision.datasets.CIFAR10(root='./data', train=True,
transform=transforms.ToTensor(), download=True)
test_dataset = torchvision.datasets.CIFAR10(root='./data', train=False,
transform=transforms.ToTensor())
# 创建数据加载器
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)
# 定义CNN模型
class ConvNet(nn.Module):
def __init__(self, num_classes):
super(ConvNet, self).__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))
self.layer2 = nn.Sequential(
nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))
self.layer3 = nn.Sequential(
nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))
self.fc1 = nn.Linear(4*4*128, 1024)
self.fc2 = nn.Linear(1024, num_classes)
def forward(self, x):
out = self.layer1(x)
out = self.layer2(out)
out = self.layer3(out)
out = out.reshape(out.size(0), -1)
out = self.fc1(out)
out = self.fc2(out)
return out
# 实例化CNN模型
model = ConvNet(num_classes)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# 训练模型
total_step = len(train_loader)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
# 前向传播
outputs = model(images)
loss = criterion(outputs, labels)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 输出训练信息
if (i+1) % 100 == 0:
print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
.format(epoch+1, num_epochs, i+1, total_step, loss.item()))
# 测试模型
model.eval()
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))
# 保存模型
torch.save(model.state_dict(), 'cnn.ckpt')
```
这是一个三层卷积神经网络,使用Adam优化器和CrossEntropyLoss损失函数进行训练,并在测试集上进行测试,最后保存模型参数。
阅读全文