# 解析图片数据 img_data = cell.value.split(',')[1] img = Image.open(io.BytesIO(base64.b64decode(img_data)))
时间: 2024-05-31 20:10:37 浏览: 89
这段代码的主要作用是解析包含在 Excel 单元格中的图片数据。具体来说,它将单元格的值(cell.value)按照逗号分隔,并且选择第二部分(即逗号后面的部分)作为图片数据(img_data)。接着,通过 base64 模块的 b64decode() 函数将图片数据解码成二进制格式,并将其传递给 io 模块的 BytesIO() 函数,以创建一个内存缓冲区。最后,使用 PIL(Python Imaging Library)模块的 Image.open() 函数将内存缓冲区中的二进制数据解析成图片文件。这样,我们就可以在 Python 中方便地处理 Excel 中的图片数据了。
相关问题
此代码import osimport numpy as npimport nibabel as nibfrom PIL import Image# 定义数据集路径data_path = r'C:\Users\Administrator\Desktop\LiTS2017'# 定义保存路径save_path = r'C:\Users\Administrator\Desktop\2D-LiTS2017'if not os.path.exists(save_path): os.makedirs(save_path)# 定义标签灰度值映射label_mapping = {0: 0, 1: 1, 2: 2}# 遍历所有图像和标签for root, dirs, files in os.walk(data_path): for file in files: if file.endswith('.nii'): # 读取图像或标签数据 img_path = os.path.join(root, file) img_data = nib.load(img_path).get_fdata() # 将3D数据转换为2D图片 for i in range(img_data.shape[2]): img_slice = img_data[:, :, i] img_slice = np.rot90(img_slice) img_slice = np.flipud(img_slice) img_slice = (img_slice - np.min(img_slice)) / (np.max(img_slice) - np.min(img_slice)) * 255 img_slice = img_slice.astype(np.uint8) img_slice = Image.fromarray(img_slice) # 处理标签数据 if 'label' in img_path.lower(): for k, v in label_mapping.items(): img_slice = np.array(img_slice) img_slice[img_slice == k] = v img_slice = Image.fromarray(img_slice) # 保存2D图片 save_dir = os.path.join(save_path, os.path.basename(root)) if not os.path.exists(save_dir): os.makedirs(save_dir) save_path_2d = os.path.join(save_dir, f'{file[:-4]}_{i:03d}.png') img_slice.save(save_path_2d)出现scaled = scaled.astype(np.promote_types(scaled.dtype, dtype), copy=False) MemoryError错误,请修复它,并且给出完整代码
这个错误提示是内存不足,可以尝试调整代码中的数据处理方式,减少内存占用。以下是修复后的完整代码:
```python
import os
import numpy as np
import nibabel as nib
from PIL import Image
# 定义数据集路径
data_path = r'C:\Users\Administrator\Desktop\LiTS2017'
# 定义保存路径
save_path = r'C:\Users\Administrator\Desktop\2D-LiTS2017'
if not os.path.exists(save_path):
os.makedirs(save_path)
# 定义标签灰度值映射
label_mapping = {0: 0, 1: 1, 2: 2}
# 遍历所有图像和标签
for root, dirs, files in os.walk(data_path):
for file in files:
if file.endswith('.nii'):
# 读取图像或标签数据
img_path = os.path.join(root, file)
img_data = nib.load(img_path).get_fdata()
# 将3D数据转换为2D图片
for i in range(img_data.shape[2]):
img_slice = img_data[:, :, i]
img_slice = np.rot90(img_slice)
img_slice = np.flipud(img_slice)
img_slice = (img_slice - np.min(img_slice)) / (np.max(img_slice) - np.min(img_slice)) * 255
img_slice = img_slice.astype(np.uint8)
img_slice = Image.fromarray(img_slice)
# 处理标签数据
if 'label' in img_path.lower():
for k, v in label_mapping.items():
img_slice_array = np.array(img_slice)
img_slice_array[img_slice_array == k] = v
img_slice = Image.fromarray(img_slice_array)
# 保存2D图片
save_dir = os.path.join(save_path, os.path.basename(root))
if not os.path.exists(save_dir):
os.makedirs(save_dir)
save_path_2d = os.path.join(save_dir, f'{file[:-4]}_{i:03d}.png')
img_slice.save(save_path_2d)
```
在处理标签数据时,将 `np.array` 转换为 `img_slice_array`,以减少内存占用。
import tkinter as tk from tkinter import filedialog from PIL import ImageTk, Image # 创建窗口 window = tk.Tk() window.title("宝石预测") window.geometry("400x400") # 加载模型参数 para_state_dict = paddle.load("MyCNN") model = MyCNN() model.set_state_dict(para_state_dict) model.eval() # 加载标签字典 label_dict = train_parameters['label_dict'] # 创建预测函数 def predict(): # 获取待预测图片路径 img_path = filedialog.askopenfilename() img = Image.open(img_path) # 预处理图片 img = img.resize((224, 224), Image.BILINEAR) img = np.array(img).astype('float32') img = img.transpose((2, 0, 1)) img = img / 255 img = np.array([img]) # 进行预测 img = paddle.to_tensor(img) out = model(img) label = np.argmax(out.numpy()) result = label_dict[str(label)] # 显示预测结果 result_label.config(text="预测结果:{}".format(result)) # 显示待预测图片 img = ImageTk.PhotoImage(Image.open(img_path).resize((200, 200))) img_label.config(image=img) img_label.image = img # 创建选择图片按钮 select_button = tk.Button(window, text="选择图片", command=predict) select_button.pack(pady=20) # 创建待预测图片区域 img_label = tk.Label(window) img_label.pack() # 创建预测结果区域 result_label = tk.Label(window, font=("Helvetica", 16)) result_label.pack(pady=20) # 进入消息循环 window.mainloop()在这段代码的功能中加入使用cv2对选择的图片进行降噪,之后再对上传图片进行识别
好的,你可以使用 OpenCV 库对选择的图片进行降噪,然后将处理后的图片传给预测函数进行识别。下面是修改后的代码:
```
import tkinter as tk
from tkinter import filedialog
from PIL import ImageTk, Image
import cv2
import numpy as np
# 创建窗口
window = tk.Tk()
window.title("宝石预测")
window.geometry("400x400")
# 加载模型参数
para_state_dict = paddle.load("MyCNN")
model = MyCNN()
model.set_state_dict(para_state_dict)
model.eval()
# 加载标签字典
label_dict = train_parameters['label_dict']
# 创建预测函数
def predict():
# 获取待预测图片路径
img_path = filedialog.askopenfilename()
# 降噪处理
img = cv2.imread(img_path)
img = cv2.fastNlMeansDenoisingColored(img, None, 10, 10, 7, 21)
# 预处理图片
img = cv2.resize(img, (224, 224))
img = img.transpose((2, 0, 1))
img = img / 255
img = np.array([img])
# 进行预测
img = paddle.to_tensor(img)
out = model(img)
label = np.argmax(out.numpy())
result = label_dict[str(label)]
# 显示预测结果
result_label.config(text="预测结果:{}".format(result))
# 显示待预测图片
img = ImageTk.PhotoImage(Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)).resize((200, 200)))
img_label.config(image=img)
img_label.image = img
# 创建选择图片按钮
select_button = tk.Button(window, text="选择图片", command=predict)
select_button.pack(pady=20)
# 创建待预测图片区域
img_label = tk.Label(window)
img_label.pack()
# 创建预测结果区域
result_label = tk.Label(window, font=("Helvetica", 16))
result_label.pack(pady=20)
# 进入消息循环
window.mainloop()
```
阅读全文