error: (-215:Assertion failed) src.type() == CV_8UC1 in function 'cv::distanceTransform'

时间: 2023-11-05 13:21:55 浏览: 349
问题中的错误信息"error: (-215:Assertion failed) src.type() == CV_8UC1 in function 'cv::distanceTransform'"是由OpenCV库中的distanceTransform函数引起的。这个错误是断言失败,意味着输入图像的类型不符合函数的期望类型CV_8UC1。CV_8UC1表示一个无符号8位单通道图像。要解决这个问题,你需要确保输入图像的类型是CV_8UC1。 引用中提到了一个类似的错误信息,在threshold函数中断言失败,断言条件是src.type() == CV_8UC1。这意味着在调用distanceTransform函数之前,你可能需要先进行类似的图像阈值化操作,将图像转换为CV_8UC1类型。 引用中提到了一个尝试将图像类型转换为CV_8UC1的方法,使用了img.convertTo(src, CV_8UC1)。然而,这种方法并没有解决问题,可能是因为转换操作没有成功。 解决这个问题的一种方法是确保在调用distanceTransform函数之前,图像已经是CV_8UC1类型。你可以使用cv2.cvtColor函数将图像转换为灰度图像,然后使用cv2.threshold函数进行阈值化操作,确保图像的类型是CV_8UC1。然后再调用distanceTransform函数。 另外,还有可能是在调用distanceTransform函数之前没有正确加载图像或者图像路径不正确导致的错误。你可以检查图像是否正确加载并且路径是否正确。 综上所述,为了解决错误"error: (-215:Assertion failed) src.type() == CV_8UC1 in function 'cv::distanceTransform'",你可以按照以下步骤进行处理: 1. 确保正确加载图像并且图像路径正确。 2. 使用cv2.cvtColor函数将图像转换为灰度图像。 3. 使用cv2.threshold函数进行阈值化操作,将图像转换为CV_8UC1类型。 4. 然后再调用distanceTransform函数进行距离变换操作。 这样应该能够解决这个错误并正确执行distanceTransform函数。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [【OpenCV错误】error: (-215:Assertion failed) src.type() == CV_8UC1 in function 'threshold'](https://blog.csdn.net/donaldsy/article/details/102078401)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* [opencv bug 处理](https://download.csdn.net/download/rechard_han/10562169)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
阅读全文

相关推荐

import cv2 import numpy as np import torch from skimage.segmentation import slic from skimage.util import img_as_float # 读取A图像和B图像 img_a = cv2.imread(r'D:\Users\Administrator\PycharmProjects\pythonProject\my tools\super_pixel\1.png') img_b = cv2.imread(r'D:\Users\Administrator\PycharmProjects\pythonProject\my tools\super_pixel\2.jpg') # 转换为浮点数 img_a = img_as_float(img_a) img_b = img_as_float(img_b) # 使用SLIC算法进行超像素分割 segments_a = slic(img_a, n_segments=1000, compactness=10) segments_b = slic(img_b, n_segments=1000, compactness=10) # 计算A图像的超像素范围 segment_ids = np.unique(segments_a) segment_ranges = [] for segment_id in segment_ids: y, x = np.where(segments_a == segment_id) min_x, max_x = np.min(x), np.max(x) min_y, max_y = np.min(y), np.max(y) segment_ranges.append((min_x, min_y, max_x, max_y)) # 创建A图像的超像素范围图 segment_map_a = np.zeros_like(segments_a, dtype=np.int32) for i, segment_range in enumerate(segment_ranges): min_x, min_y, max_x, max_y = segment_range segment_map_a[min_y:max_y+1, min_x:max_x+1] = i # 使用A图像的超像素范围索引对B图像进行分割 segment_map_b = np.zeros_like(segments_b, dtype=np.int32) for i, segment_range in enumerate(segment_ranges): min_x, min_y, max_x, max_y = segment_range segment_id = segments_a[min_y, min_x] y, x = np.where(segments_b == segment_id) segment_map_b[y, x] = i # 转换为PyTorch张量 segment_map_b = torch.Tensor(segment_map_b).long() # 显示B图像的超像素范围图 cv2.imshow('Segment Map', segment_map_b.numpy()) cv2.waitKey(0) cv2.destroyAllWindows()。上述代码出现错误: cv2.imshow('Segment Map', segment_map_b.numpy()) cv2.error: OpenCV(4.7.0) D:/a/opencv-python/opencv-python/opencv/modules/highgui/src/precomp.hpp:155: error: (-215:Assertion failed) src_depth != CV_16F && src_depth != CV_32S in function 'convertToShow'

最新推荐

recommend-type

储能双向变流器,可实现整流器与逆变器控制,可实现整流与逆变,采用母线电压PI外环与电流内环PI控制,可整流也可逆变实现并网,实现能量双向流动,采用SVPWM调制方式 1.双向 2.SVPWM 3.双

储能双向变流器,可实现整流器与逆变器控制,可实现整流与逆变,采用母线电压PI外环与电流内环PI控制,可整流也可逆变实现并网,实现能量双向流动,采用SVPWM调制方式。 1.双向 2.SVPWM 3.双闭环 支持simulink2022以下版本,联系跟我说什么版本,我给转成你需要的版本(默认发2016b)。
recommend-type

LCC-LCC无线充电恒流 恒压闭环移相控制仿真 Simulink仿真模型,LCC-LCC谐振补偿拓扑,闭环移相控制 1. 输入直流电压350V,负载为切电阻,分别为50-60-70Ω,最大功率3.4

LCC-LCC无线充电恒流 恒压闭环移相控制仿真 Simulink仿真模型,LCC-LCC谐振补偿拓扑,闭环移相控制 1. 输入直流电压350V,负载为切电阻,分别为50-60-70Ω,最大功率3.4kW,最大效率为93.6%。 2. 闭环PI控制:设定值与反馈值的差通过PI环节,输出控制量限幅至0到1之间,控制逆变电路移相占空比。 3. 设置恒压值350V,恒流值7A。
recommend-type

(仿真原件+报告)永磁同步电机转速外环+电流内环控制,采用级连H桥五电平逆变器控制,转速环控制,五电平采用SPWM,且设有死区控制 1.五电平逆变器 2.SPWM,死区控制 3.提供相关参考文献 提

(仿真原件+报告)永磁同步电机转速外环+电流内环控制,采用级连H桥五电平逆变器控制,转速环控制,五电平采用SPWM,且设有死区控制。 1.五电平逆变器 2.SPWM,死区控制 3.提供相关参考文献 提供报告,里面有仿真每个模块的作用,仿真原理与解析。 提供参考文献,提供控制原理。 支持simulink2022以下版本,联系跟我说什么版本,我给转成你需要的版本(默认发2016b)。
recommend-type

S7-PDIAG工具使用教程及技术资料下载指南

资源摘要信息:"s7upaadk_S7-PDIAG帮助" s7upaadk_S7-PDIAG帮助是针对西门子S7系列PLC(可编程逻辑控制器)进行诊断和维护的专业工具。S7-PDIAG是西门子提供的诊断软件包,能够帮助工程师和技术人员有效地检测和解决S7 PLC系统中出现的问题。它提供了一系列的诊断功能,包括但不限于错误诊断、性能分析、系统状态监控以及远程访问等。 S7-PDIAG软件广泛应用于自动化领域中,尤其在工业控制系统中扮演着重要角色。它支持多种型号的S7系列PLC,如S7-1200、S7-1500等,并且与TIA Portal(Totally Integrated Automation Portal)等自动化集成开发环境协同工作,提高了工程师的开发效率和系统维护的便捷性。 该压缩包文件包含两个关键文件,一个是“快速接线模块.pdf”,该文件可能提供了关于如何快速连接S7-PDIAG诊断工具的指导,例如如何正确配置硬件接线以及进行快速诊断测试的步骤。另一个文件是“s7upaadk_S7-PDIAG帮助.chm”,这是一个已编译的HTML帮助文件,它包含了详细的操作说明、故障排除指南、软件更新信息以及技术支持资源等。 了解S7-PDIAG及其相关工具的使用,对于任何负责西门子自动化系统维护的专业人士都是至关重要的。使用这款工具,工程师可以迅速定位问题所在,从而减少系统停机时间,确保生产的连续性和效率。 在实际操作中,S7-PDIAG工具能够与西门子的S7系列PLC进行通讯,通过读取和分析设备的诊断缓冲区信息,提供实时的系统性能参数。用户可以通过它监控PLC的运行状态,分析程序的执行流程,甚至远程访问PLC进行维护和升级。 另外,该帮助文件可能还提供了与其他产品的技术资料下载链接,这意味着用户可以通过S7-PDIAG获得一系列扩展支持。例如,用户可能需要下载与S7-PDIAG配套的软件更新或补丁,或者是需要更多高级功能的第三方工具。这些资源的下载能够进一步提升工程师解决复杂问题的能力。 在实践中,熟练掌握S7-PDIAG的使用技巧是提升西门子PLC系统维护效率的关键。这要求工程师不仅要有扎实的理论基础,还需要通过实践不断积累经验。此外,了解与S7-PDIAG相关的软件和硬件产品的技术文档,对确保自动化系统的稳定运行同样不可或缺。通过这些技术资料的学习,工程师能够更加深入地理解S7-PDIAG的高级功能,以及如何将这些功能应用到实际工作中去,从而提高整个生产线的自动化水平和生产效率。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

CC-LINK远程IO模块AJ65SBTB1现场应用指南:常见问题快速解决

# 摘要 CC-LINK远程IO模块作为一种工业通信技术,为自动化和控制系统提供了高效的数据交换和设备管理能力。本文首先概述了CC-LINK远程IO模块的基础知识,接着详细介绍了其安装与配置流程,包括硬件的物理连接和系统集成要求,以及软件的参数设置与优化。为应对潜在的故障问题,本文还提供了故障诊断与排除的方法,并探讨了故障解决的实践案例。在高级应用方面,文中讲述了如何进行编程与控制,以及如何实现系统扩展与集成。最后,本文强调了CC-LINK远程IO模块的维护与管理的重要性,并对未来技术发展趋势进行了展望。 # 关键字 CC-LINK远程IO模块;系统集成;故障诊断;性能优化;编程与控制;维护
recommend-type

python 画一个进度条

在Python中,你可以使用`tkinter`库来创建一个简单的进度条。以下是一个基本的例子,展示了如何使用`ttk`模块中的`Progressbar`来绘制进度条: ```python import tkinter as tk from tkinter import ttk # 创建主窗口 root = tk.Tk() # 设置进度条范围 max_value = 100 # 初始化进度条 progress_bar = ttk.Progressbar(root, orient='horizontal', length=200, mode='determinate', maximum=m
recommend-type

Nginx 1.19.0版本Windows服务器部署指南

资源摘要信息:"nginx-1.19.0-windows.zip" 1. Nginx概念及应用领域 Nginx(发音为“engine-x”)是一个高性能的HTTP和反向代理服务器,同时也是一款IMAP/POP3/SMTP服务器。它以开源的形式发布,在BSD许可证下运行,这使得它可以在遵守BSD协议的前提下自由地使用、修改和分发。Nginx特别适合于作为静态内容的服务器,也可以作为反向代理服务器用来负载均衡、HTTP缓存、Web和反向代理等多种功能。 2. Nginx的主要特点 Nginx的一个显著特点是它的轻量级设计,这意味着它占用的系统资源非常少,包括CPU和内存。这使得Nginx成为在物理资源有限的环境下(如虚拟主机和云服务)的理想选择。Nginx支持高并发,其内部采用的是多进程模型,以及高效的事件驱动架构,能够处理大量的并发连接,这一点在需要支持大量用户访问的网站中尤其重要。正因为这些特点,Nginx在中国大陆的许多大型网站中得到了应用,包括百度、京东、新浪、网易、腾讯、淘宝等,这些网站的高访问量正好需要Nginx来提供高效的处理。 3. Nginx的技术优势 Nginx的另一个技术优势是其配置的灵活性和简单性。Nginx的配置文件通常很小,结构清晰,易于理解,使得即使是初学者也能较快上手。它支持模块化的设计,可以根据需要加载不同的功能模块,提供了很高的可扩展性。此外,Nginx的稳定性和可靠性也得到了业界的认可,它可以在长时间运行中维持高效率和稳定性。 4. Nginx的版本信息 本次提供的资源是Nginx的1.19.0版本,该版本属于较新的稳定版。在版本迭代中,Nginx持续改进性能和功能,修复发现的问题,并添加新的特性。开发团队会根据实际的使用情况和用户反馈,定期更新和发布新版本,以保持Nginx在服务器软件领域的竞争力。 5. Nginx在Windows平台的应用 Nginx的Windows版本支持在Windows操作系统上运行。虽然Nginx最初是为类Unix系统设计的,但随着版本的更新,对Windows平台的支持也越来越完善。Windows版本的Nginx可以为Windows用户提供同样的高性能、高并发以及稳定性,使其可以构建跨平台的Web解决方案。同时,这也意味着开发者可以在开发环境中使用熟悉的Windows系统来测试和开发Nginx。 6. 压缩包文件名称解析 压缩包文件名称为"nginx-1.19.0-windows.zip",这表明了压缩包的内容是Nginx的Windows版本,且版本号为1.19.0。该文件包含了运行Nginx服务器所需的所有文件和配置,用户解压后即可进行安装和配置。文件名称简洁明了,有助于用户识别和确认版本信息,方便根据需要下载和使用。 7. Nginx在中国大陆的应用实例 Nginx在中国大陆的广泛使用,证明了其在实际部署中的卓越表现。这包括但不限于百度、京东、新浪、网易、腾讯、淘宝等大型互联网公司。这些网站的高访问量要求服务器能够处理数以百万计的并发请求,而Nginx正是凭借其出色的性能和稳定性满足了这一需求。这些大型网站的使用案例为Nginx带来了良好的口碑,同时也证明了Nginx作为一款服务器软件的领先地位。 总结以上信息,Nginx-1.19.0-windows.zip是一个适用于Windows操作系统的Nginx服务器软件压缩包,提供了高性能的Web服务和反向代理功能,并被广泛应用于中国大陆的大型互联网企业中。用户在使用该压缩包时,可以期待一个稳定、高效且易于配置的服务器环境。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

CC-LINK远程IO模块在环境监控中的应用:技术与案例探讨

![CC-LINK](https://www.mitsubishielectric.com/fa/products/cnt/plcnet/pmerit/cclink_ie/concept/img/main_img.jpg) # 摘要 CC-LINK远程IO模块作为一种先进的工业通信技术,在环境监控系统中具有广泛应用。本文首先概述了CC-LINK远程IO模块的基本概念及其在环境监控系统中的基础理论,包括硬件组成、软件架构及技术优势。随后,详细介绍了其在实时监控与远程控制、系统集成与配置、安全维护方面的具体实践应用。案例分析部分深入探讨了CC-LINK模块在不同环境监控场景中的应用效果与技术解决