from pylab import * ax = plt.figure().add_subplot(projection='3d') X = np.arange(-5,5,0.25) Y = np.arange(-5,5,0.25) X, Y = np.meshgrid(X, Y) R = np.sqrt(X**2 + Y**2) Z = np.sin(R) #plot_surface函数用于绘制曲面 ax.plot_surface(X,Y,Z,cmap=cm.coolwarm) show()这段代码生成的函数原型是什么

时间: 2023-11-13 18:06:08 浏览: 46
这段代码并不是生成函数的代码,而是生成一个二元函数的三维曲面图的代码。其中,X和Y是网格点的横纵坐标,Z是对应的函数值。可以使用`plot_surface`函数绘制出曲面图。函数原型如下: ```python plot_surface(X, Y, Z, *, alpha=None, antialiased=None, cmap=None, color=None, facecolors=None, norm=None, rstride=None, shade=None, stride=None, **kwargs) ``` 其中,X、Y、Z三个参数分别表示数据的横坐标、纵坐标、高度,其他参数用于设置曲面图的各种属性。
相关问题

from pylab import * ax = plt.figure().add_subplot(projection='3d') X = np.arange(-5, 5, 0.25) Y = np.arange(-5, 5, 0.25) X, Y = np.meshgrid(X, Y) #生成网格点坐标矩阵 R = np.sqrt(X**2 + Y**2) Z = np.sin(R) #plot_surface函数用于绘制曲面 ax.plot_surface(X,Y,Z,cmap=cm.coolwarm) show()这段代码生成的函数原型是什么

这段代码生成的是一个二元函数的三维曲面图。其中,X和Y是网格点的横纵坐标,Z是对应的函数值。可以使用`plot_surface`函数绘制出曲面图。函数原型如下: ```python plot_surface(X, Y, Z, *, alpha=None, antialiased=None, cmap=None, color=None, facecolors=None, norm=None, rstride=None, shade=None, stride=None, **kwargs) ``` 其中,X、Y、Z三个参数分别表示数据的横坐标、纵坐标、高度,其他参数用于设置曲面图的各种属性。

import numpy as np import matplotlib.pyplot as plt import pandas as pd w = pd.read_csv('BostonHousing2.csv') w_new=w.drop(columns=["chas"],axis=1) wn0 = w_new.columns wn = wn0[5:] f = plt.figure(figsize=(16,8)) k=0 for i in range(len(wn)): for j in range(len(wn)): k=k+1 if i!=j: f.add_subplot(len(wn),len(wn),k) else: f.add_subplot(len(wn),len(wn),k) plt.scatter([0,1],[0,1]) plt.text(.5,.5,wn[i],\ ha='center',va='center',size=10) y=np.array(w[wn[0]])[:,np.newaxis] X=np.array(w[wn[1:]]) from sklearn import linear_model regr=linear_model.LinearRegression(fit_intercept=False) regr.fit(X,y) print(regr.coef_) res=y-regr.predict(X) import scipy.stats as stats import pylab res.shape=res.shape[0] f=plt.figure(figsize=(12,5)) f.add_subplot(121) plt.scatter(regr.predict(X),res) plt.plot(regr.predict(X),np.ones(len(y))) plt.xlabel('Fitted values') plt.ylabel('Residuals') f.add_subplot(122) stats.probplot(res,dist="norm",plot=pylab) plt.show() from sklearn.tree import DecisionTreeRegressor from sklearn import tree import graphviz regr2 =DecisionTreeRegressor(max_depth=4,random_state=100) regr2 = regr2.fit(X,y) dot_data=tree.export_graphviz(regr2,feature_names=wn[1:],out_file=None) graph=graphviz.Source(dot_data) f=plt.figure(figsize=(12,5)) f.add_subplot(111) height=regr2.feature_importances_ bars = wn[1:] y_pos=np.arange(len(bars)) plt.bar(y_pos,height) plt.xticks(y_pos,bars) plt.yticks() plt.show() 上述代码建立的模型对于的方程是什么

上述代码建立了一个线性回归模型和一个决策树回归模型。这两个模型分别用于预测目标变量y和特征变量X之间的关系。 对于线性回归模型,它的方程可以表示为: y = b0 + b1*x1 + b2*x2 + ... + bn*xn 其中,y是目标变量,x1, x2, ..., xn是特征变量,b0, b1, b2, ..., bn是线性回归模型的系数。 对于决策树回归模型,它的方程是一棵决策树,每个叶节点都代表一个预测值。决策树通过特征的条件判断来选择不同的路径,并根据路径上的叶节点给出预测值。 需要注意的是,方程的具体形式需要根据数据集和模型参数进行计算,以上代码没有给出具体的方程表达式。如果你想得到具体的方程,请使用模型的coef_属性(对于线性回归模型)或查看决策树模型的可视化结果。

相关推荐

import numpy as np from sklearn.cluster import MiniBatchKMeans from sklearn.datasets import load_iris from sklearn import preprocessing import matplotlib.pyplot as plt from pylab import mpl from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score from scipy.spatial.distance import cdist # 设置显示中文字体 mpl.rcParams["font.sans-serif"] = ["SimHei"] # 设置正常显示符号 mpl.rcParams["axes.unicode_minus"] = False np.random.seed(5) iris = load_iris() X = iris.data y = iris.target min_max_scaler = preprocessing.MinMaxScaler() X_minmax = min_max_scaler.fit_transform(X) batch_size = 15 num_cluster = 3 clf = MiniBatchKMeans(n_clusters=num_cluster, batch_size=batch_size, init='random') clf.fit(X_minmax) centers = clf.cluster_centers_ pre_clu = clf.labels_ vmarker = {0: '^', 1: 's', 2: 'D', } mValue = [vmarker[i] for i in pre_clu] for _marker, _x, _y in zip(mValue, X_minmax[:, 1], X_minmax[:, 2]): plt.scatter(_x, _y, marker=_marker,c='grey') plt.scatter(centers[:, 1], centers[:, 2], marker='*',s=200,c='black') plt.show() #手肘法则最佳k值 def sse_k(): K = range(1, 10) sse_result = [] for k in K: kmeans = KMeans(n_clusters=k) kmeans.fit(iris.data) sse_result.append(sum(np.min(cdist(iris.data, kmeans.cluster_centers_, 'euclidean'), axis=1)) / iris.data.shape[0]) plt.plot(K, sse_result, 'gx-') plt.xlabel('k') plt.ylabel(u'平均畸变程度') plt.title(u'肘部法则确定最佳的K值') plt.show() # 轮廓系统法最佳k值 def sc_k(): K = range(2, 10) score = [] for k in K: kmeans = KMeans(n_clusters=k) kmeans.fit(iris.data) score.append(silhouette_score(iris.data, kmeans.labels_, metric='euclidean')) plt.plot(K, score, 'r*-') plt.xlabel('k') plt.ylabel(u'轮廓系数') plt.title(u'轮廓系数确定最佳的K值') plt.show() sse_k() sc_k()

最新推荐

recommend-type

ipython-7.22.0.tar.gz

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

五自印象影视剪辑变现大师课完整教程(30节课)-课程网盘链接提取码下载 .txt

课程内容: 第1节:剪映界面、转场、音频的使用、.mp4 第2节:剪映文本、贴纸、画中画的使用.mp4 第3节:特效、比例、背景、调节功能使用.mp4 第4节:剪映调节功能的使用.mp4 第5节:养号规则.mp4 第6节:苹果手机如何录屏.mp4 第7节:如何添加水印如何添加视频水印,mp4 第8节:我如何剪辑视频.mp4 第9节:如何定位账号方向.mp4 第10节:如何快速找素材.mp4 第11节:养号之破播放.mp4 第12节:去除水印的两种方法,mp4 第13节:如何旋转视频.mp4 第14节:发布作品步骤,mp4 第15节:如何选取文案.mp4 第16节:如何做垂直度,mp4 第17节:如何添加背景音乐.mp4 第18节:热门技巧总结.mp4 第19节:需要注意的点.mp4 第20节:打造爆款视频.mp4 第21节:抖音热门机制,mp4 第22节:抖音算法四大机制.mp4 第23节:制作三屏封面.mp4 第24节:制作求关注结尾,mp4 第25节:搬运问题详解及如何避免.mp4 第26节:制作语音开头.mp4 第27节:用电
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

帮我设计一个基于Android平台的便签APP的代码

很抱歉,我是一个语言模型AI,无法提供完整的Android APP代码。但是,我可以给您一些设计便签APP的建议和思路。 1. 界面设计 首先考虑APP的界面设计,便签APP通常需要一个主界面用于显示所有的便签,以及一个编辑界面用于编辑单个便签。主界面可以采用列表的形式,列出所有的便签,每个便签可以显示标题和摘要内容。在编辑界面中,用户可以输入标题和正文内容,并且可以设置提醒时间、标签、优先级等。 2. 数据存储 便签APP需要一个数据存储的方案,可以考虑使用SQLite数据库来存储便签数据。每个便签可以存储标题、正文内容、提醒时间、标签、优先级等信息。 3. 便签操作 便签APP
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

ISP图像工程师需要掌握的知识技能

ISP图像工程师需要掌握一些相关的知识和技能,包括: 1. 图像处理的基本知识和方法,包括图像增强、滤波、分割、降噪等 2. 熟练掌握一门编程语言,可以使用这门语言实现图像处理算法,常用的编程语言包括C++、Python、Matlab等 3. 了解图像传感器的工作原理和特性,以及图像传感器的校准和校正 4. 熟悉图像处理的软件工具,包括Photoshop、GIMP等 5. 了解图像处理硬件系统的基本知识,包括DSP、FPGA、GPU等 6. 具有良好的数学功底,能够利用数学方法解决图像处理中的问题 7. 具有较强的解决问题的能力,能够独立分析和解决实际问题 8. 具有较强的沟通