使用MATLAB语言编写多输入变量的BP神经网络预测模型

时间: 2023-06-10 22:02:44 浏览: 35
好的,让我来回答你的问题。使用MATLAB语言编写多输入变量的BP神经网络预测模型需要以下步骤: 1. 准备数据:准备训练数据和测试数据集,包括输入和输出变量。 2. 创建神经网络:在MATLAB中创建BP神经网络,设置网络的基本参数,如层数、节点以及激活函数等。 3. 训练模型:使用训练数据集来训练神经网络模型,采用反向传播算法进行优化。 4. 测试模型:使用测试数据集来测试训练好的模型,查看模型的精度和性能。 5. 应用模型:将训练好的模型应用到新的数据中,进行预测和分析。 以上就是使用MATLAB语言编写多输入变量的BP神经网络预测模型的基本步骤。希望我的回答能够帮到你。
相关问题

使用MATLAB语言实现多输入变量的BP神经网络预测模型

好的,我了解您的问题。使用MATLAB语言实现多输入变量的BP神经网络预测模型需要遵循以下步骤: 1. 收集数据集并对其进行预处理,包括数据归一化和特征缩放。 2. 设计神经网络结构,包括输入层、隐藏层和输出层的节点数,以及激活函数的选择。 3. 初始化神经网络的权重和偏置,并定义学习率、批量大小和优化算法。 4. 利用训练数据拟合神经网络,使用反向传播算法更新网络参数。 5. 使用交叉验证技术选择最佳的神经网络模型,并进行预测和评估。 MATLAB提供了许多用于神经网络预测模型的工具箱和函数,其中包括神经网络工具箱和数据分析工具箱。您可以使用这些工具来实现多输入变量的BP神经网络预测模型。

使用MATLAB语言编写多因变量的BP神经网络预测模型

好的,我了解了。对于您的问题,我可以提供以下步骤来编写一个多因变量的BP神经网络预测模型: 1.准备数据集,包括输入数据和输出数据。 2.将数据集分为训练集和测试集。 3.使用 MATLAB 中的 Neural Network Toolbox 创建一个 BP 神经网络模型。 4.根据输入和输出数据,将模型配置为多因变量预测模型。 5.使用训练集训练模型。 6.使用测试集测试模型的准确性和可靠性。 7.对模型进行调整和优化,以提高预测精度。 以上是我可以提供的一些步骤,希望能够对您有所帮助。

相关推荐

BP神经网络是一种常用的人工神经网络模型,可以用于分类、回归、时间序列预测等各种应用。在MATLAB中,可以使用神经网络工具箱来实现BP神经网络模型。 首先,需要准备好数据集,包括输入和输出数据。输入数据可以是任何连续或离散数据,而输出数据则应与输入数据相关联,如图像识别数据集中输入为图像像素值,输出为相应的标签。然后,可以使用MATLAB中的“nntool”来创建一个新的BP神经网络模型。 在神经网络工具箱中,可以使用“newff”函数创建一个新的前向反馈神经网络。该函数有四个输入参数,分别为输入层的大小、隐藏层的大小、输出层的大小和训练函数。例如,以下命令将创建一个具有1个输入、1个隐藏、2个输出以及使用“trainlm”训练函数的BP神经网络模型: net=newff([min max],[隐藏层大小],[2],{'tansig','purelin'},'trainlm'); 其中,[min max]表示输入层的大小,tansig和purelin分别表示隐藏层和输出层的激活函数。 之后,可以使用“train”函数对训练数据对网络进行训练。该函数有四个输入参数,分别为网络模型、输入数据、目标输出数据和训练参数。例如,以下命令将对神经网络进行一次训练: [net,tr]=train(net,input,target); 其中,tr是一个结构体,包含有关网络训练过程的信息。 训练完成后,可以使用“sim”函数对网络进行模拟并使用测试数据集进行测试。例如: output=sim(net,test_input); 输出变量包含了网络的预测结果。 最后,可以使用“save”函数保存训练好的神经网络模型,并使用“load”函数重新加载它,以便在以后的任务中使用。例如: save('bp_net.mat','net'); load('bp_net.mat'); 在实际使用BP神经网络模型进行应用时,需要考虑许多因素,如输入数据的预处理、隐藏层的选择、训练参数的优化等等,并且需要应用各种技巧来提高网络模型的性能。但是,在MATLAB中使用神经网络工具箱提供的函数,可以方便地构建BP神经网络模型,并快速进行训练和测试。
### 回答1: 您可以使用以下代码来实现在MATLAB中编写的BP神经网络改进PID程序: % 定义训练数据 p = [1 2 3 4 5]; t = [2 4 6 8 10]; % 初始化神经网络 net = feedforwardnet(10); % 设置训练算法 net.trainFcn = 'trainlm'; % 训练神经网络 net = train(net,p,t); % 测试神经网络 y = net(p); % 计算误差 e = t - y; % 将误差作为PID的输入 u = pid(e); % 输出结果 disp(u); 在上面的代码中,我们定义了一组训练数据,初始化了一个包含10个隐藏单元的前馈神经网络,并使用trainlm算法对其进行训练。然后,我们对训练后的神经网络进行测试,并计算误差。最后,我们使用PID算法对误差进行控制,并输出结果。 请注意,上面的代码仅提供了一个示例,可能需要根据您的具体需求进行修改。 ### 回答2: BP神经网络是一种常用的机器学习算法,可以通过训练来实现对输入-输出映射关系的建模。PID控制器是一种经典的控制算法,通过调节偏差、积分和导数三个参数来实现对系统的控制。结合这两种算法,我们可以用BP神经网络来改进PID控制器的性能。 首先,我们需要在MATLAB中定义一个BP神经网络。可以使用neural network toolbox中的相关函数创建神经网络模型。设置好模型的输入层节点数、隐藏层节点数和输出层节点数。 然后,我们需要准备一些训练数据。数据应包括系统的输入和输出,以及目标值。其中,输入可以是系统的状态或者是PID控制器的输出,输出为系统的实际输出值。 接下来,使用神经网络模型训练数据。可以使用train函数,设置好神经网络的学习率、训练次数等参数。通过神经网络的训练,可以调整PID控制器的参数,使其更好地适应系统的特性。 完成训练后,可以使用已训练好的神经网络模型进行预测。将PID控制器的输出输入到神经网络中,得到神经网络的输出。这个输出可以作为PID控制器的输出值,并作为系统的输入。通过不断迭代这个过程,可以逐渐优化PID控制器的性能。 需要注意的是,使用BP神经网络改进PID控制器需要较多的数据和一定的经验。通常需要进行多次试验和参数调整,才能得到满意的结果。此外,还需要注意避免过拟合和欠拟合等问题。 总结来说,用MATLAB编写BP神经网络改进PID的程序的步骤如下:定义神经网络模型、准备训练数据、训练神经网络模型、使用已训练好的模型进行预测,并根据预测结果调整PID控制器的参数。 ### 回答3: BP神经网络是一种能够进行模式识别和非线性建模的神经网络算法,而PID控制器是常用于控制系统中的一种反馈控制算法。结合这两者,可以利用BP神经网络来改进PID控制器的性能。 首先,使用MATLAB中的neural network toolbox来创建一个BP神经网络。设置输入层节点数量为控制系统的输入变量(比如,位置误差),输出层节点数量为控制系统的输出变量(比如,控制信号)。然后,设置隐藏层的节点数量和层数,这取决于控制系统的复杂性和所需的精确性。 接下来,需要准备训练数据集,这些数据包含系统输入和期望输出。可以使用控制系统进行仿真,或者通过实验获得数据集。 然后,将数据集分为训练集和测试集。使用训练集来训练BP神经网络,通过迭代优化网络权值和阈值,使得网络输出与期望输出的误差最小化。 训练完成后,使用测试集验证网络的性能。通过对比神经网络的输出和期望输出,可以评估BP神经网络的性能并进行调整和改进。 最后,将训练好的BP神经网络与PID控制器结合起来。可以利用BP神经网络的输出作为PID控制器的参考输入,并使用PID控制算法根据系统状态生成控制信号。 通过这种方式,BP神经网络可以根据系统的非线性特性和任务需求来自适应地调整PID控制器的参数,从而改进PID控制器的性能。
### 回答1: 以下是一个简单的MATLAB代码示例,用于使用BP神经网络进行电力负荷预测: matlab % 导入历史电力负荷数据 load_data = load('load_data.mat'); % 将数据拆分为输入和输出变量 X = load_data(:, 1:end-1); y = load_data(:, end); % 创建BP神经网络模型 net = feedforwardnet([10 10 10], 'trainlm'); % 设置训练参数 net.trainParam.epochs = 1000; net.trainParam.lr = 0.01; % 训练模型 net = train(net, X', y'); % 使用模型进行预测 predicted_load = net(X'); % 打印预测结果 disp(predicted_load); 其中,load_data.mat是包含历史电力负荷数据的MATLAB数据文件,每行包含一个时间点的输入变量和对应的输出变量。feedforwardnet函数创建了一个多层前馈神经网络,[10 10 10]参数指定了网络的隐藏层大小。trainlm参数指定了训练算法。训练完成后,可以使用sim函数对新的输入数据进行预测,得到对应的输出结果。 ### 回答2: 使用MATLAB编写BP神经网络电力负荷预测的代码可以大致分为以下几个步骤: 1. 数据预处理:首先,加载电力负荷数据,可以使用MATLAB中的xlsread函数读取Excel文件。然后,对数据进行归一化处理,将数据缩放到一个特定范围内。可以使用mapminmax函数实现数据归一化操作。 2. 神经网络模型构建:选择合适的网络结构和参数,可以使用MATLAB中的feedforwardnet函数创建一个前馈神经网络对象。根据问题的具体要求,设置输入层的节点数、隐藏层的节点数和输出层的节点数,并使用trainlm函数选择合适的训练算法进行网络训练。 3. 数据集划分:将数据集划分为训练集、验证集和测试集。可以使用MATLAB中的dividerand函数将数据集划分为指定比例的训练集、验证集和测试集。 4. 训练网络模型:将训练集输入到神经网络中,使用train函数进行网络训练。可以设置合适的最大训练次数或训练误差精度,以确保网络能够收敛。 5. 验证网络模型:使用验证集对训练好的网络模型进行验证,可以使用sim函数计算预测输出。根据验证结果,可以调整网络结构或参数,如隐藏层节点数、学习率等。 6. 测试网络模型:最后,使用测试集对训练好的网络模型进行测试。使用sim函数计算模型的预测输出,通过与实际观测值进行比较,评估模型的性能。 以上是基本的BP神经网络电力负荷预测的MATLAB代码实现思路。具体的代码实现需要根据具体的数据和网络结构进行调整和优化。 ### 回答3: BP神经网络(Back Propagation Neural Network)是一种常用的人工神经网络模型,用于解决各种预测和分类问题。在电力负荷预测中,BP神经网络也被广泛应用。 BP神经网络电力负荷预测的MATLAB代码可以包括以下几个主要步骤: 1. 数据预处理:收集和整理历史电力负荷数据,并将其分为训练集和测试集。可以使用MATLAB的数据处理工具,如importdata函数来读取和处理数据。 2. 数据归一化:将原始的电力负荷数据进行归一化处理,将其限定在一个特定的范围内,例如0到1之间。这可以通过使用MATLAB的normalize函数来实现。 3. 网络建模:定义BP神经网络的结构,包括输入层、隐藏层和输出层的节点数。可以使用MATLAB的feedforwardnet函数来创建BP神经网络,并设置网络的参数,如学习率、动量因子等。 4. 网络训练:使用训练集对BP神经网络进行训练,使其能够学习电力负荷数据的模式和规律。可以使用MATLAB的train函数来进行网络训练,并设置训练的最大迭代次数和误差容限。 5. 网络预测:使用已经训练好的BP神经网络对测试集进行预测,得出电力负荷的预测结果。可以使用MATLAB的sim函数来进行网络预测。 6. 结果评估:对预测结果进行评估,计算预测误差指标,如均方根误差(RMSE)、平均绝对误差(MAE)等。可以使用MATLAB的evaluate函数来计算各种评估指标。 以上是BP神经网络电力负荷预测的大致MATLAB代码流程。其中,需要根据具体的数据和问题进行一定的调整和优化,以提高预测的准确性和可靠性。同时,还可以通过调整网络结构、改变训练参数等方法来进一步优化预测结果。
以下是一个简单的 MATLAB BP 神经网络预测并进行可信度分析的示例代码: % 加载数据 load data.mat X = input; Y = output; % 分割数据集为训练集和测试集 trainRatio = 0.8; % 训练集比例 [trainInd,testInd] = divideblock(size(X,2),trainRatio,1-trainRatio); % 创建 BP 神经网络 net = feedforwardnet([10 5]); % 设置训练参数 net.trainParam.showWindow = false; net.trainParam.epochs = 100; net.trainParam.goal = 0.01; % 训练 BP 神经网络 [net,tr] = train(net,X,Y); % 预测测试集数据 testX = X(:,testInd); testY = Y(:,testInd); Yhat = net(testX); % 计算可信度 error = testY - Yhat; meanError = mean(abs(error)); stdError = std(abs(error)); % 可视化结果 figure; plot(testY,'b'); hold on; plot(Yhat,'r'); xlabel('样本编号'); ylabel('输出值'); legend('真实值','预测值'); figure; plot(error./testY*100,'b'); hold on; plot(meanError./testY*100*ones(size(error)),'r--'); plot((meanError+stdError)./testY*100*ones(size(error)),'g--'); plot((meanError-stdError)./testY*100*ones(size(error)),'g--'); xlabel('样本编号'); ylabel('误差百分比'); legend('误差','平均误差','标准差范围'); 其中,data.mat 是输入和输出数据的 MATLAB 格式文件,应该包含两个变量 input 和 output。trainRatio 是训练集比例,可以根据具体情况进行调整。feedforwardnet([10 5]) 创建一个两个隐藏层,分别有 10 和 5 个神经元的 BP 神经网络。trainParam 是训练参数,包括是否显示训练窗口、最大训练轮数和目标误差等。train 函数用于训练 BP 神经网络,返回训练好的网络和训练信息。testX 和 testY 是测试集数据,Yhat 是 BP 神经网络的预测结果。error 是预测误差,meanError 和 stdError 是误差的平均值和标准差,用于计算可信度。最后两个图形分别是真实值和预测值的比较以及误差百分比的分布和可信度范围的标记。 注意,这只是一个简单的示例代码,实际应用中可能需要更多的数据预处理、模型优化和可信度分析方法。
### 回答1: 在Matlab中,可以使用多输入单输出的模型来实现反向传播神经网络(BP)模型。BP神经网络是一种常用的人工神经网络模型,用于解决分类和回归问题。 首先,需要设置BP神经网络的结构和参数。可以使用Matlab中的newff函数来创建一个新的前馈神经网络。通过设定输入层数、隐藏层数、输出层数和每层的神经元数量来定义网络结构。还需要选择激活函数和训练算法。例如,可以使用Sigmoid作为激活函数,使用Levenberg-Marquardt算法作为训练算法。 接下来,需要准备训练数据集。训练数据集应包含多个输入和一个对应的输出。可以使用Matlab的数据导入功能将数据从外部文件中加载到Matlab中。 然后,可以使用train函数来训练BP神经网络。需要将训练数据集作为输入,以及设置训练参数,如最大训练次数、训练误差阈值等。训练过程将自动调整网络的权重和偏差以最小化输出与目标输出之间的误差。 训练完成后,可以使用训练好的BP神经网络进行预测。通过提供一个新的输入样本,使用sim函数可以得到对应的输出。这可以用来解决分类问题,通过输出层的激活函数来判断属于哪个类别;或者用来解决回归问题,根据输出层的数值来预测连续值。 最后,可以使用评估指标(如均方误差或准确率)来评估BP神经网络模型的性能。这些指标可以帮助判断网络是否可以准确地预测未知数据的输出。 综上所述,Matlab中可以使用BP多输入单输出模型来解决分类和回归问题。通过设置网络结构和参数,准备训练数据,训练BP神经网络,使用训练好的网络进行预测,并使用评估指标评估性能,可以构建和应用BP神经网络模型。 ### 回答2: MATLAB中的BP(Back Propagation)多输入单输出模型是基于反向传播算法的一种神经网络模型。BP神经网络模型是一种前馈神经网络,其基本原理是通过不断地调整网络的权重和偏差以最小化输出误差,从而实现对输入数据的非线性建模和预测。 对于多输入单输出的情况,BP神经网络模型通过将多个输入特征组合成一个输入层,并将其与中间的隐含层进行连接,最后通过连接到输出层,从而将多个输入映射到单个输出。 在MATLAB中,可以使用神经网络工具箱来构建和训练BP多输入单输出模型。首先,我们需要确定网络的拓扑结构,包括决定输入层神经元的数量以及隐含层和输出层的神经元数量。然后,可以使用"feedforwardnet"函数创建一个BP神经网络对象,并使用"train"函数进行网络的训练。 在训练过程中,MATLAB会根据输入样本和对应的目标输出样本来动态调整网络的权重和偏差。一般情况下,可以使用梯度下降法作为反向传播算法的优化方法,通过计算网络输出与目标输出的误差来更新网络的参数。 通过训练得到的BP多输入单输出模型,我们可以对新的输入数据进行预测并得到输出结果。这种模型在实际应用中具有广泛的用途,如模式识别、数据分类、回归分析等。 总而言之,MATLAB中的BP多输入单输出模型是一种使用反向传播算法构建的神经网络模型,可以通过训练来学习输入与输出之间的非线性关系,实现对输入数据的预测和建模。 ### 回答3: MATLAB中的BP多输入单输出模型是一种基于BP(反向传播)算法的神经网络模型,其目的是通过学习输入和输出之间的关系来进行预测、分类或回归等任务。 BP多输入单输出模型由输入层、隐藏层和输出层组成。输入层接收各个输入变量的值,隐藏层对输入进行处理并转化为更高级的特征表示,输出层根据这些特征进行最终结果的预测。 在MATLAB中,可以使用“feedforwardnet”函数建立BP多输入单输出模型。首先,需要准备好输入数据和相应的输出数据,然后使用“newff”函数创建一个新的前馈神经网络对象。接着,使用“train”函数对神经网络进行训练,以使其学习输入和输出之间的关系。训练完成后,可以使用已训练的神经网络对新的输入数据进行预测。 具体而言,可以按照以下步骤进行: 1. 准备输入数据和输出数据。将输入数据和相应的输出数据按照一定的比例分为训练集和测试集。 2. 在MATLAB中创建一个新的前馈神经网络对象,可以指定隐藏层节点的数量和激活函数等参数。 3. 使用“train”函数对神经网络进行训练。可以选择不同的训练算法和参数来完成训练过程。 4. 通过“sim”函数使用已训练的神经网络对测试集的输入数据进行预测。 5. 根据预测结果与实际输出之间的误差评估模型的性能,如计算均方根误差(RMSE)或准确率等指标。 6. 进行模型的优化和改进,如调整隐藏层节点数量、学习率等参数,或进行集成学习等技术的应用。 总之,MATLAB中的BP多输入单输出模型是一种基于BP算法的神经网络模型,可以通过学习输入和输出之间的关系来进行预测、分类或回归等任务。使用MATLAB提供的相关函数和工具,可以快速搭建和训练这样的模型,并对其进行优化和评估。
使用Matlab实现BP神经网络的步骤如下: 1. 准备数据:将数据集分为训练集和测试集,并将其进行标准化处理。 2. 构建神经网络模型:使用Matlab的Neural Network Toolbox工具箱中的nnstart或者newff函数来构建神经网络模型。其中,newff函数可以使用自定义的网络结构和参数来构建BP神经网络。 3. 设置网络参数:设置网络的参数,如学习率、动量、最大训练次数、误差目标等。 4. 训练网络:使用train函数对神经网络进行训练,直到达到预设的训练次数或误差目标。 5. 测试网络:使用test函数对训练好的神经网络进行测试,得到网络的预测结果。 6. 评估网络:通过比较神经网络的预测结果和实际结果,计算出网络的性能指标,如准确率、精度、召回率、F1值等。 7. 优化网络:通过调整神经网络的参数和结构,不断优化网络的性能。 具体实现步骤可以参考以下示例代码: % 准备数据 load iris_dataset x = irisInputs; t = irisTargets; % 数据标准化处理 [x,settings] = mapminmax(x); % 构建神经网络模型 net = newff(x,t,[5 3],{'tansig' 'purelin'},'trainlm'); % 设置网络参数 net.trainParam.lr = 0.01; net.trainParam.mc = 0.9; net.trainParam.epochs = 5000; net.trainParam.goal = 0.01; % 训练网络 [net,~] = train(net,x,t); % 测试网络 y = net(x); % 评估网络 perf = perform(net,t,y); % 优化网络 net = init(net); [net,~] = train(net,x,t); 其中,构建神经网络模型的代码中,第二个参数表示输出变量的个数,第三个参数表示神经网络的结构,第四个参数表示激活函数,最后一个参数表示训练算法。在本例中,使用了两个隐层,分别包含5个和3个神经元,激活函数分别为tansig和purelin,训练算法为trainlm。其他参数的含义可以通过Matlab文档进行查阅。
BP神经网络(Backpropagation Neural Network)是一种常见的人工神经网络,它通过反向传播算法(Backpropagation)学习,具有较好的分类和预测能力。 在MATLAB中,可以使用Neural Network Toolbox工具箱实现BP神经网络。下面是一个简单的BP神经网络的例子: 1. 准备数据集 首先需要准备数据集,包括输入数据和对应的输出数据。例如,训练一个简单的二分类器,数据集可以如下: x = [0 0 1 1; 0 1 0 1]; t = [0 1 1 0]; 其中,x表示输入数据,t表示对应的输出数据。这里的输入数据是一个2x4的矩阵,表示有两个输入变量,每个变量有4个样本。输出数据是一个1x4的矩阵,表示每个样本的分类结果。 2. 创建神经网络 使用neural network toolbox工具箱中的newff函数创建神经网络,指定输入层和输出层的大小,以及中间层的个数和神经元个数。 net = newff(x,t,[2,1],{'logsig','logsig'},'trainlm'); 其中,[2,1]表示中间层有2个神经元,输出层有1个神经元。{'logsig','logsig'}表示使用logsig作为激活函数。 3. 训练神经网络 使用train函数对神经网络进行训练,指定训练次数和训练误差。 net.trainParam.epochs = 1000; net.trainParam.goal = 1e-5; net = train(net,x,t); 其中,epochs表示训练次数,goal表示训练误差。 4. 使用神经网络进行预测 使用sim函数对神经网络进行预测。 y = sim(net,x); 其中,y表示预测结果,是一个1x4的矩阵,表示每个样本的分类结果。 以上是一个简单的BP神经网络的例子,可以根据具体需求进行修改和扩展。

最新推荐

MATLAB 人工智能实验设计 基于BP神经网络的鸢尾花分类器设计

了解分类问题的概念以及基于BP神经网络设计分类器的基本流程。 二、实验平台 MatLab/Simulink仿真平台。 三、实验内容和步骤 1. iris数据集简介 iris数据集的中文名是安德森鸢尾花卉数据集,英文全称是Anderson's ...

安全文明监理实施细则_工程施工土建监理资料建筑监理工作规划方案报告_监理实施细则.ppt

安全文明监理实施细则_工程施工土建监理资料建筑监理工作规划方案报告_监理实施细则.ppt

"REGISTOR:SSD内部非结构化数据处理平台"

REGISTOR:SSD存储裴舒怡,杨静,杨青,罗德岛大学,深圳市大普微电子有限公司。公司本文介绍了一个用于在存储器内部进行规则表达的平台REGISTOR。Registor的主要思想是在存储大型数据集的存储中加速正则表达式(regex)搜索,消除I/O瓶颈问题。在闪存SSD内部设计并增强了一个用于regex搜索的特殊硬件引擎,该引擎在从NAND闪存到主机的数据传输期间动态处理数据为了使regex搜索的速度与现代SSD的内部总线速度相匹配,在Registor硬件中设计了一种深度流水线结构,该结构由文件语义提取器、匹配候选查找器、regex匹配单元(REMU)和结果组织器组成。此外,流水线的每个阶段使得可能使用最大等位性。为了使Registor易于被高级应用程序使用,我们在Linux中开发了一组API和库,允许Registor通过有效地将单独的数据块重组为文件来处理SSD中的文件Registor的工作原

typeerror: invalid argument(s) 'encoding' sent to create_engine(), using con

这个错误通常是由于使用了错误的参数或参数格式引起的。create_engine() 方法需要连接数据库时使用的参数,例如数据库类型、用户名、密码、主机等。 请检查你的代码,确保传递给 create_engine() 方法的参数是正确的,并且符合参数的格式要求。例如,如果你正在使用 MySQL 数据库,你需要传递正确的数据库类型、主机名、端口号、用户名、密码和数据库名称。以下是一个示例: ``` from sqlalchemy import create_engine engine = create_engine('mysql+pymysql://username:password@hos

数据库课程设计食品销售统计系统.doc

数据库课程设计食品销售统计系统.doc

海量3D模型的自适应传输

为了获得的目的图卢兹大学博士学位发布人:图卢兹国立理工学院(图卢兹INP)学科或专业:计算机与电信提交人和支持人:M. 托马斯·福吉奥尼2019年11月29日星期五标题:海量3D模型的自适应传输博士学校:图卢兹数学、计算机科学、电信(MITT)研究单位:图卢兹计算机科学研究所(IRIT)论文主任:M. 文森特·查维拉特M.阿克塞尔·卡里尔报告员:M. GWendal Simon,大西洋IMTSIDONIE CHRISTOPHE女士,国家地理研究所评审团成员:M. MAARTEN WIJNANTS,哈塞尔大学,校长M. AXEL CARLIER,图卢兹INP,成员M. GILLES GESQUIERE,里昂第二大学,成员Géraldine Morin女士,图卢兹INP,成员M. VINCENT CHARVILLAT,图卢兹INP,成员M. Wei Tsang Ooi,新加坡国立大学,研究员基于HTTP的动态自适应3D流媒体2019年11月29日星期五,图卢兹INP授予图卢兹大学博士学位,由ThomasForgione发表并答辩Gilles Gesquière�

1.创建以自己姓名拼音缩写为名的数据库,创建n+自己班级序号(如n10)为名的数据表。2.表结构为3列:第1列列名为id,设为主键、自增;第2列列名为name;第3列自拟。 3.为数据表创建模型,编写相应的路由、控制器和视图,视图中用无序列表(ul 标签)呈现数据表name列所有数据。 4.创建视图,在表单中提供两个文本框,第一个文本框用于输入以上数据表id列相应数值,以post方式提交表单。 5.控制器方法根据表单提交的id值,将相应行的name列修改为第二个文本框中输入的数据。

步骤如下: 1. 创建数据库和数据表 创建名为xny_n10的数据表,其中xny为姓名拼音缩写,n10为班级序号。 ``` CREATE DATABASE IF NOT EXISTS xny_n10; USE xny_n10; CREATE TABLE IF NOT EXISTS xny_n10 ( id INT(11) PRIMARY KEY AUTO_INCREMENT, name VARCHAR(50), column3 VARCHAR(50) ); ``` 2. 创建模型 在app/Models目录下创建XnyN10.php文件,定义XnyN10模型类,继承自I

液压推板式隧道电阻炉计算机监控设计毕业设计.doc

液压推板式隧道电阻炉计算机监控设计毕业设计.doc

HAL多学科开放获取档案库的作用及代理重加密和认证委托的研究

0HAL编号:tel-038172580https://theses.hal.science/tel-038172580提交日期:2022年10月17日0HAL是一个多学科开放获取档案库,用于存储和传播科学研究文档,无论其是否发表。这些文档可以来自法国或国外的教育和研究机构,也可以来自公共或私人研究中心。0HAL多学科开放获取档案库旨在存储和传播法国或国外的教育和研究机构、公共或私人实验室发表或未发表的研究文档。0代理重加密和认证委托的贡献0Anass Sbai0引用此版本:0Anass Sbai. 代理重加密和认证委托的贡献. 离散数学[cs.DM]. 皮卡第朱尔大学, 2021. 法语. �NNT:2021AMIE0032�. �tel-03817258�0博士学位论文0专业“计算机科学”0提交给科技与健康学院博士学位学校0皮卡第朱尔大学0由0Anass SBAI0获得皮卡第朱尔大学博士学位0代理重加密和认证委托的贡献0于2021年7月5日,在评审人的意见后,面向考试委员会进行

c++输入若干不同的整数构成的升序序列,请编写一个程序,找出序列中有多少个数是序列中其他两个数的平均值要求使用算法,使计算量最小,计算时间最短

算法思路: 1. 先将输入的升序序列存储到vector<int>中 2. 枚举每个数,以该数为平均数,查找序列中是否存在两个数的平均值等于该数 3. 可以采用双指针法,从序列的两端开始查找,如果两个指针所指的数的平均值大于目标数,则右指针左移;如果平均值小于目标数,则左指针右移;如果平均值等于目标数,则找到一个符合条件的数 4. 计数器加1,继续枚举下一个数 代码实现如下: ```c++ #include<iostream> #include<vector> using namespace std; int main() { int n; cin >> n;