集中质量算法matlab
时间: 2023-06-02 18:01:31 浏览: 211
集中质量算法(Centroid Method)是一种常用的图像分割算法,其基本思路是将一幅图像分成若干个区域,使得每个区域内部的像素灰度值相似,而不同区域之间的像素灰度值差异较大。下面是一份基于Matlab的集中质量算法代码实现,供参考:
```
function [segs, num_segs] = Centroid(img, T)
% img: input grayscale image
% T: threshold for segmentation
% segs: output segmented image
% num_segs: number of segments
[m, n] = size(img);
segs = zeros(m, n); % initialize segmented image
label = 0; % initialize label
for i = 1:m
for j = 1:n
if segs(i, j) == 0 % if pixel not labeled
label = label + 1; % create new label
segs(i, j) = label; % label current pixel
neighbor_label = []; % initialize neighbor labels
neighbor_val = []; % initialize neighbor values
neighbor_count = 0; % initialize neighbor count
c = [i, j]; % centroid position
% find neighboring pixels and their values
if i > 1 % north
neighbor_count = neighbor_count + 1;
neighbor_label(neighbor_count) = segs(i-1, j);
neighbor_val(neighbor_count) = img(i-1, j);
end
if j > 1 % west
neighbor_count = neighbor_count + 1;
neighbor_label(neighbor_count) = segs(i, j-1);
neighbor_val(neighbor_count) = img(i, j-1);
end
if i < m % south
neighbor_count = neighbor_count + 1;
neighbor_label(neighbor_count) = segs(i+1, j);
neighbor_val(neighbor_count) = img(i+1, j);
end
if j < n % east
neighbor_count = neighbor_count + 1;
neighbor_label(neighbor_count) = segs(i, j+1);
neighbor_val(neighbor_count) = img(i, j+1);
end
% compute centroid of neighboring pixels
if neighbor_count > 0
centroid = [0, 0];
for k = 1:neighbor_count
centroid = centroid + [neighbor_label(k)*neighbor_val(k), neighbor_label(k)];
end
centroid = centroid / sum(neighbor_label.*neighbor_val);
c = round(centroid(2:-1:1)); % convert to (i,j) format
end
% propagate label to neighboring pixels
for k = 1:neighbor_count
if abs(neighbor_val(k) - img(c(1), c(2))) <= T % if values similar
segs(c(1), c(2)) = neighbor_label(k); % propagate label
end
end
end
end
end
num_segs = max(max(segs)); % compute number of segments
```
该代码实现了Centroid算法的基本流程,包括:
1. 对图像中每个未标记像素进行遍历;
2. 对当前像素的相邻像素进行获取,并计算其质心位置;
3. 判断相邻像素的灰度值是否与当前像素的灰度值相似,如果相似则将其标记为当前像素所在的区域;
4. 重复1~3步骤,直到所有像素均被标记。
该算法的核心在于质心的计算和标记的传播,其中质心的计算采用了加权平均的方式,可以有效地减少噪声的影响,标记的传播则通过判断相邻像素的灰度值是否相似来实现。
阅读全文