写一个用resnet18分析jaffe数据的代码
时间: 2023-06-10 20:02:54 浏览: 101
pytorch+resnet18实现长尾数据集分类(一)
好的,下面是使用 PyTorch 写的基于 ResNet18 分析 JAFFE 数据集的代码:
```
import torch
from torch import nn
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, models
from PIL import Image
import numpy as np
import pandas as pd
class JAFFEDataset(Dataset):
def __init__(self, csv_file, root_dir, transform=None):
self.annotations = pd.read_csv(csv_file)
self.root_dir = root_dir
self.transform = transform
def __len__(self):
return len(self.annotations)
def __getitem__(self, idx):
img_path = self.root_dir + '/' + self.annotations.iloc[idx, 0]
image = Image.open(img_path)
emotion = self.annotations.iloc[idx, 1]
labels_dict = {'NE':0, 'AN':1, 'DI':2, 'FE':3, 'HA':4, 'SA':5, 'SU':6}
label = labels_dict[emotion]
if self.transform:
image = self.transform(image)
return image, label
transform_train = transforms.Compose([
transforms.Resize((224, 224)),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(10),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
transform_test = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
train_set = JAFFEDataset('jaffe_train.csv', 'jaffe', transform_train)
test_set = JAFFEDataset('jaffe_test.csv', 'jaffe', transform_test)
train_loader = DataLoader(train_set, batch_size=32, shuffle=True)
test_loader = DataLoader(test_set, batch_size=32, shuffle=False)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = models.resnet18(pretrained=True)
model.fc = nn.Linear(512, 7)
model.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
num_epochs = 10
for epoch in range(num_epochs):
for images, labels in train_loader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
loss = criterion(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the test images: %d %%' % (100 * correct / total))
```
以上是基于 ResNet18 分析 JAFFE 数据集的代码,该代码可用于训练并测试一个情绪识别模型。您可以将代码保存为 `.py` 文件并在命令行中运行。注意,您需要确保已经下载了 JAFFE 数据集,并相应修改代码中的文件名和路径。
阅读全文