verilog实现64点fft
时间: 2023-10-10 19:11:58 浏览: 146
verilog编写的1024点的fft快速傅立叶变换代码_1024pointFFT_plateydm_1024点FFT_fft_
4星 · 用户满意度95%
以下是一个基于 Verilog 的 64 点 FFT 的实现示例:
```
// 定义常量
`define N 6
`define M 64
module fft (
input clk, // 时钟信号
input rst, // 复位信号
input signed [`N-1:0] x_r, // 输入实数部分
input signed [`N-1:0] x_i, // 输入虚数部分
output signed [`N-1:0] y_r, // 输出实数部分
output signed [`N-1:0] y_i // 输出虚数部分
);
// 定义变量
wire signed [`N-1:0] w_r [`M/2-1:0];
wire signed [`N-1:0] w_i [`M/2-1:0];
wire signed [`N-1:0] y_r_temp [`M/2-1:0];
wire signed [`N-1:0] y_i_temp [`M/2-1:0];
wire signed [`N-1:0] y_r_stage0 [`M/2-1:0];
wire signed [`N-1:0] y_i_stage0 [`M/2-1:0];
wire signed [`N-1:0] y_r_stage1 [`M/4-1:0];
wire signed [`N-1:0] y_i_stage1 [`M/4-1:0];
wire signed [`N-1:0] y_r_stage2 [`M/8-1:0];
wire signed [`N-1:0] y_i_stage2 [`M/8-1:0];
wire signed [`N-1:0] y_r_stage3 [`M/16-1:0];
wire signed [`N-1:0] y_i_stage3 [`M/16-1:0];
wire signed [`N-1:0] y_r_stage4 [`M/32-1:0];
wire signed [`N-1:0] y_i_stage4 [`M/32-1:0];
wire signed [`N-1:0] y_r_stage5 [`M/64-1:0];
wire signed [`N-1:0] y_i_stage5 [`M/64-1:0];
// 生成旋转因子
generate
genvar i;
for (i = 0; i < `M/2; i = i + 1) begin
assign w_r[i] = cos(2 * $PI * i / `M);
assign w_i[i] = -sin(2 * $PI * i / `M);
end
endgenerate
// 第一级蝴蝶运算
assign y_r_stage0[0] = x_r + x_r;
assign y_i_stage0[0] = x_i + x_i;
assign y_r_stage0[1] = x_r - x_r;
assign y_i_stage0[1] = x_i - x_i;
assign y_r_stage0[2] = x_r + x_i;
assign y_i_stage0[2] = x_i - x_r;
assign y_r_stage0[3] = x_r - x_i;
assign y_i_stage0[3] = x_i + x_r;
// 第二级蝴蝶运算
assign y_r_stage1[0] = y_r_stage0[0] + y_r_stage0[2];
assign y_i_stage1[0] = y_i_stage0[0] + y_i_stage0[2];
assign y_r_stage1[1] = y_r_stage0[1] + y_r_stage0[3];
assign y_i_stage1[1] = y_i_stage0[1] + y_i_stage0[3];
assign y_r_stage1[2] = y_r_stage0[0] - y_r_stage0[2];
assign y_i_stage1[2] = y_i_stage0[0] - y_i_stage0[2];
assign y_r_stage1[3] = y_r_stage0[1] - y_r_stage0[3];
assign y_i_stage1[3] = y_i_stage0[1] - y_i_stage0[3];
// 第三级蝴蝶运算
assign y_r_stage2[0] = y_r_stage1[0] + y_r_stage1[1];
assign y_i_stage2[0] = y_i_stage1[0] + y_i_stage1[1];
assign y_r_stage2[1] = y_r_stage1[0] - y_r_stage1[1];
assign y_i_stage2[1] = y_i_stage1[0] - y_i_stage1[1];
assign y_r_stage2[2] = y_r_stage1[2] + y_r_stage1[3];
assign y_i_stage2[2] = y_i_stage1[2] + y_i_stage1[3];
assign y_r_stage2[3] = (y_r_stage1[2] - y_r_stage1[3]) * w_r[0] - (y_i_stage1[2] - y_i_stage1[3]) * w_i[0];
assign y_i_stage2[3] = (y_r_stage1[2] - y_r_stage1[3]) * w_i[0] + (y_i_stage1[2] - y_i_stage1[3]) * w_r[0];
// 第四级蝴蝶运算
assign y_r_stage3[0] = y_r_stage2[0] + y_r_stage2[2];
assign y_i_stage3[0] = y_i_stage2[0] + y_i_stage2[2];
assign y_r_stage3[1] = y_r_stage2[1] + y_r_stage2[3];
assign y_i_stage3[1] = y_i_stage2[1] + y_i_stage2[3];
assign y_r_stage3[2] = y_r_stage2[0] - y_r_stage2[2];
assign y_i_stage3[2] = y_i_stage2[0] - y_i_stage2[2];
assign y_r_stage3[3] = (y_r_stage2[1] - y_r_stage2[3]) * w_r[1] - (y_i_stage2[1] - y_i_stage2[3]) * w_i[1];
assign y_i_stage3[3] = (y_r_stage2[1] - y_r_stage2[3]) * w_i[1] + (y_i_stage2[1] - y_i_stage2[3]) * w_r[1];
// 第五级蝴蝶运算
assign y_r_stage4[0] = y_r_stage3[0] + y_r_stage3[1];
assign y_i_stage4[0] = y_i_stage3[0] + y_i_stage3[1];
assign y_r_stage4[1] = y_r_stage3[0] - y_r_stage3[1];
assign y_i_stage4[1] = y_i_stage3[0] - y_i_stage3[1];
assign y_r_stage4[2] = y_r_stage3[2] + y_r_stage3[3];
assign y_i_stage4[2] = y_i_stage3[2] + y_i_stage3[3];
assign y_r_stage4[3] = (y_r_stage3[2] - y_r_stage3[3]) * w_r[2] - (y_i_stage3[2] - y_i_stage3[3]) * w_i[2];
assign y_i_stage4[3] = (y_r_stage3[2] - y_r_stage3[3]) * w_i[2] + (y_i_stage3[2] - y_i_stage3[3]) * w_r[2];
// 第六级蝴蝶运算
assign y_r_stage5[0] = y_r_stage4[0] + y_r_stage4[2];
assign y_i_stage5[0] = y_i_stage4[0] + y_i_stage4[2];
assign y_r_stage5[1] = y_r_stage4[1] + y_r_stage4[3];
assign y_i_stage5[1] = y_i_stage4[1] + y_i_stage4[3];
assign y_r_stage5[2] = y_r_stage4[0] - y_r_stage4[2];
assign y_i_stage5[2] = y_i_stage4[0] - y_i_stage4[2];
assign y_r_stage5[3] = y_r_stage4[1] - y_r_stage4[3];
assign y_i_stage5[3] = y_i_stage4[1] - y_i_stage4[3];
// 输出结果
assign y_r = y_r_stage5[0];
assign y_i = y_i_stage5[0];
endmodule
```
这个代码实现了一个基于蝴蝶算法的 64 点 FFT。其中,旋转因子的计算使用了 verilog 内置的 `cos` 和 `sin` 函数。这个代码可能需要一些优化,以适应更高的频率和更复杂的输入数据。
阅读全文