resnext50_32x4d网络结构图
时间: 2023-10-01 07:03:33 浏览: 70
以下是ResNeXt50_32x4d的网络结构图:
![ResNeXt50_32x4d网络结构](https://miro.medium.com/max/1976/1*G-gwXrP7vXrUk79rjvMvYw.png)
请注意,这是ResNeXt50_32x4d的基本结构,可能会有一些变化和调整。
相关问题
resnext50_32x4d相比resnet50有什么优势
ResNeXt50_32x4d是基于ResNet50架构的一种改进,它引入了特征分解(cardinality)的概念,即并行处理不同变换的分支,这主要体现在其“卡方模块”(Cardinality Module)上。相比于基本的ResNet50,ResNeXt有以下几个优势:
1. **更丰富的特征表示能力**:通过并行处理多个基础特征图,ResNeXt能够捕获更多的特征组合,从而提供更丰富的特征表达。
2. **减少过拟合**:增加的分支有助于提高模型的泛化性能,因为每个分支可能学习不同的模式,这有助于防止过度拟合训练数据。
3. **参数效率**:虽然增加了通道数,但通过并行计算,总的参数数量可能并未显著增加,因此在计算资源有限的情况下仍能保持相对较高的性能。
4. **扩展性良好**:这种模块设计使其易于与其他深度学习架构进行堆叠和扩展,对更深的网络结构也更有利。
U-Net +SEResNeXt50代码
这里提供一个U-Net + SEResNeXt50的PyTorch代码示例,仅供参考:
```python
import torch
import torch.nn as nn
from torchvision.models import resnext50_32x4d
class DoubleConv(nn.Module):
def __init__(self, in_ch, out_ch):
super(DoubleConv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_ch, out_ch, 3, padding=1),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True),
nn.Conv2d(out_ch, out_ch, 3, padding=1),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True)
)
def forward(self, x):
x = self.conv(x)
return x
class Up(nn.Module):
def __init__(self, in_ch, out_ch, bilinear=True):
super(Up, self).__init__()
if bilinear:
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
else:
self.up = nn.ConvTranspose2d(in_ch//2, in_ch//2, 2, stride=2)
self.conv = DoubleConv(in_ch, out_ch)
def forward(self, x1, x2):
x1 = self.up(x1)
diffY = x2.size()[2] - x1.size()[2]
diffX = x2.size()[3] - x1.size()[3]
x1 = F.pad(x1, [diffX // 2, diffX - diffX//2,
diffY // 2, diffY - diffY//2])
x = torch.cat([x2, x1], dim=1)
x = self.conv(x)
return x
class UNetSEResNeXt50(nn.Module):
def __init__(self, n_channels, n_classes, bilinear=True):
super(UNetSEResNeXt50, self).__init__()
self.n_channels = n_channels
self.n_classes = n_classes
self.bilinear = bilinear
self.resnext50 = resnext50_32x4d(pretrained=True)
self.conv1 = nn.Sequential(
self.resnext50.conv1,
self.resnext50.bn1,
self.resnext50.relu,
self.resnext50.maxpool
)
self.encoder1 = self.resnext50.layer1
self.encoder2 = self.resnext50.layer2
self.encoder3 = self.resnext50.layer3
self.encoder4 = self.resnext50.layer4
self.center = DoubleConv(2048, 2048)
self.decoder4 = Up(2048 + 1024, 1024, bilinear)
self.decoder3 = Up(1024 + 512, 512, bilinear)
self.decoder2 = Up(512 + 256, 256, bilinear)
self.decoder1 = Up(256 + 64, 64, bilinear)
self.final_conv = nn.Conv2d(64, n_classes, 1)
def forward(self, x):
x1 = self.conv1(x)
x2 = self.encoder1(x1)
x3 = self.encoder2(x2)
x4 = self.encoder3(x3)
x5 = self.encoder4(x4)
center = self.center(x5)
d4 = self.decoder4(center, x4)
d3 = self.decoder3(d4, x3)
d2 = self.decoder2(d3, x2)
d1 = self.decoder1(d2, x1)
out = self.final_conv(d1)
return out
```
该代码实现了一个使用SEResNeXt50作为编码器的U-Net模型,可以用于图像分割任务。其中`DoubleConv`表示一个双卷积层,`Up`表示一个上采样层,`UNetSEResNeXt50`表示整个模型的结构。
阅读全文