长沙地铁查询系统最优化c语言代码包含查询最短路径

时间: 2023-07-31 14:07:36 浏览: 80
长沙地铁查询系统最优化c语言代码包含查询最短路径需要用到图论算法。以下是一个基于Dijkstra算法的最短路径查询代码示例: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> #define MAX_VERTEX_NUM 100 // 最大顶点数 #define INFINITY 65535 // 无穷大 typedef struct { int weight; // 边权值 char line[20]; // 地铁线路 } EdgeType; typedef struct { char name[20]; // 站点名称 int num; // 站点编号 } VertexType; typedef struct { int edges[MAX_VERTEX_NUM][MAX_VERTEX_NUM]; // 邻接矩阵,存放边的权值 int n, e; // n表示顶点数,e表示边数 VertexType vexs[MAX_VERTEX_NUM]; // 存放顶点信息 } MGraph; void CreateGraph(MGraph *G) { int i, j, k, w; char line[20]; printf("请输入顶点数和边数:\n"); scanf("%d %d", &G->n, &G->e); for (i = 0; i < G->n; i++) { printf("请输入第%d个顶点的名称:\n", i + 1); scanf("%s", G->vexs[i].name); G->vexs[i].num = i + 1; } for (i = 0; i < G->n; i++) { for (j = 0; j < G->n; j++) { G->edges[i][j] = INFINITY; // 初始化邻接矩阵 } } for (k = 0; k < G->e; k++) { printf("请输入边的起始顶点、终止顶点、边权值和地铁线路:\n"); scanf("%d %d %d %s", &i, &j, &w, line); G->edges[i - 1][j - 1] = w; G->edges[j - 1][i - 1] = w; // 无向图 EdgeType *edge = malloc(sizeof(EdgeType)); edge->weight = w; strcpy(edge->line, line); } } void Dijkstra(MGraph G, int v, int dist[], int path[][MAX_VERTEX_NUM]) { int i, j, k, min; int *final = malloc(sizeof(int) * G.n); for (i = 0; i < G.n; i++) { final[i] = 0; dist[i] = G.edges[v][i]; for (j = 0; j < G.n; j++) { path[i][j] = 0; } if (dist[i] < INFINITY) { path[i][v] = 1; path[i][i] = 1; } } dist[v] = 0; final[v] = 1; for (i = 1; i < G.n; i++) { min = INFINITY; for (j = 0; j < G.n; j++) { if (!final[j] && dist[j] < min) { k = j; min = dist[j]; } } final[k] = 1; for (j = 0; j < G.n; j++) { if (!final[j] && min + G.edges[k][j] < dist[j]) { dist[j] = min + G.edges[k][j]; for (int m = 0; m < G.n; m++) { path[j][m] = path[k][m]; } path[j][j] = 1; } } } } int main() { MGraph G; int dist[MAX_VERTEX_NUM]; int path[MAX_VERTEX_NUM][MAX_VERTEX_NUM]; int start, end; CreateGraph(&G); printf("请输入起点和终点:\n"); scanf("%d %d", &start, &end); Dijkstra(G, start - 1, dist, path); printf("从%s到%s的最短路径长度为:%d\n", G.vexs[start - 1].name, G.vexs[end - 1].name, dist[end - 1]); printf("路径为:\n"); for (int i = 0; i < G.n; i++) { if (path[end - 1][i]) { printf("%s ", G.vexs[i].name); } } printf("\n"); return 0; } ``` 以上代码实现了基于Dijkstra算法的最短路径查询,其中MGraph结构体存储了地铁线路的信息,包括顶点信息和邻接矩阵。Dijkstra函数实现了最短路径的计算,dist数组存储了起点到各个顶点的最短距离,path数组存储了各个顶点的最短路径。最后,根据起点和终点,输出最短路径的长度和路径。

相关推荐

最新推荐

recommend-type

C语言求解无向图顶点之间的所有最短路径

C语言求解无向图顶点之间的所有最短路径 本文主要介绍了使用C语言解决无向图顶点之间的所有最短路径问题。该问题是图论领域中的一个经典问题,解决这个问题可以帮助我们更好地理解图论的基本概念和算法思想。 在...
recommend-type

C语言程序设计实现区号查询系统C语言程序设计实现

用C语言编程的区号查询系统,要求实现区号查询系统中,添加新记录、删除记录、显示记录信息、按城市查找信息和退出系统等功能。 ①录入有关城市的名称和区号。 ②显示所有城市的信息。 ③通过输入城市名称查找对应...
recommend-type

餐馆点菜系统C语言源代码

本资源为大家详细介绍了餐馆点菜系统的C语言源代码,代码中包含了多个函数和结构体,用于实现餐馆点菜系统的各个功能。下面是对代码的详细解释: 首先,代码中定义了多个结构体,包括NODE结构体、myhead结构体、...
recommend-type

c语言 单源最短路径源代码

在本文中,我们将使用C语言来实现单源最短路径算法,并且提供了详细的源代码和实验截图。 单源最短路径算法的原理 单源最短路径算法的原理是使用分枝限界法来搜索最短路径。分枝限界法是一种常用的搜索策略,它...
recommend-type

C语言之字符串模糊查询方法的实现

在C语言中,字符串模糊查询是指在一组字符串中查找与给定模式部分匹配的字符串。在实际应用中,这种功能非常常见,例如在文本搜索、数据库查询等方面。本篇文章将探讨如何使用C语言来实现一个简单的字符串模糊查询...
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。