解读一下 figure subplot(211) plot(1:length(T_train),T_train, 'r-', 1:length(T_sim1),T_sim1, 'b-.', 'LineWidth', 1) legend('实际值', 'BP预测值') xlabel('训练集') ylabel('负荷(kW)') axis tight string = {['BP 训练集:(RMSE= ' num2str(RMSE1) ' MAPE = ' num2str(MAPE1) ')']}; title(string) subplot(212) bar(err1) xlabel('训练集') ylabel('Error') axis tight figure subplot(211) plot(1:length(T_test),T_test,'r-', 1:length(T_sim2),T_sim2, 'b-.', 'LineWidth', 1) legend('实际值', 'BP预测值') xlabel('测试集') ylabel('负荷(kW)') axis tight string = {['BP 测试集:(RMSE= ' num2str(RMSE2) ' MAPE = ' num2str(MAPE2) ')']}; title(string) subplot(212) bar(err2) xlabel('训练集') ylabel('Error') axis tight
时间: 2023-06-14 09:06:23 浏览: 141
这段代码是用于绘制两个图形的,每个图形都有两个子图。第一个图形的第一个子图使用subplot(211)函数,用于绘制训练集的实际负载值和BP神经网络的预测负载值,分别使用红色实线和蓝色点划线进行绘制。legend函数用于添加图例,xlabel和ylabel函数分别用于添加x轴和y轴标签,axis tight函数则是调整坐标轴范围。title函数用于添加子图的标题,其中包含了RMSE和MAPE两个指标的值。第二个子图使用bar函数绘制训练集的误差,用于观察BP神经网络训练的效果。
第一个图形的第二个子图使用subplot(212)函数,用于绘制测试集的实际负载值和BP神经网络的预测负载值,同样使用红色实线和蓝色点划线进行绘制。legend、xlabel、ylabel、axis tight和title函数的作用与第一个子图相同。第二个子图使用bar函数绘制测试集的误差,用于评估BP神经网络的预测效果。
相关问题
[filename,pathname,flag] = uigetfile('.jpg','请导入图像文件'); pic = imread([pathname,filename]); figure; imshow(pic); %% 确定训练集 TrainData_background = zeros(20,3,'double'); TrainData_foreground = ones(20,3,'double'); % 背景采样 msgbox('请选择20个背景样本点','Background Samples','help'); pause; for run = 1:20 [x,y] = ginput(1); %ginput函数直接提取像素点,返回这个点的坐标 hold on; plot(x,y,'r*'); x = uint8(x); y = uint8(y); TrainData_background(run,1) = pic(x,y,1); TrainData_background(run,2) = pic(x,y,2); TrainData_background(run,3) = pic(x,y,3); end % 待分割出来的前景采样 msgbox('请选择20个前景样本点','Foreground Samples','help'); pause; for run = 1:20 [x,y] = ginput(1); hold on; plot(x,y,'ro'); x = uint8(x); y = uint8(y); TrainData_foreground(run,1) = pic(x,y,1); TrainData_foreground(run,2) = pic(x,y,2); TrainData_foreground(run,3) = pic(x,y,3); end % let background be 0 & foreground 1 TrainLabel = [zeros(length(TrainData_background),1); ... ones(length(TrainData_foreground),1)]; %% 建立支持向量机 基于libsvm TrainData = [TrainData_background;TrainData_foreground]; model = svmtrain(TrainLabel, TrainData, '-t 1 -d 3'); %% 进行预测 i.e.进行图像分割 基于libsvm preTrainLabel = svmpredict(TrainLabel, TrainData, model); [m,n,k] = size(pic); TestData = double(reshape(pic,m*n,k)); TestLabal = svmpredict(zeros(length(TestData),1), TestData, model); %% ind = reshape([TestLabal,TestLabal,TestLabal],m,n,k); ind = logical(ind); pic_seg = pic; pic_seg(~ind) = 255; figure; imshow(pic_seg); figure; subplot(1,2,1); imshow(pic); subplot(1,2,2); imshow(pic_seg); %% toc将这些代码转换成python语言
```
import cv2
import numpy as np
from sklearn import svm
from tkinter import Tk
from tkinter.filedialog import askopenfilename
from tkinter.messagebox import showinfo
# 选择图像文件
root = Tk()
root.withdraw()
file_path = askopenfilename(filetypes=[('JPEG', '*.jpg')])
pic = cv2.imread(file_path)
# 显示图像
cv2.imshow('pic', pic)
# 确定训练集
train_data_background = np.zeros([20, 3])
train_data_foreground = np.ones([20, 3])
# 背景采样
showinfo('Background Samples', '请选择20个背景样本点')
for run in range(20):
(x, y) = cv2.ginpuit(1)
cv2.circle(pic, (x, y), 1, (0, 0, 255), -1)
train_data_background[run, 0] = pic[x, y, 0]
train_data_background[run, 1] = pic[x, y, 1]
train_data_background[run, 2] = pic[x, y, 2]
# 待分割出来的前景采样
showinfo('Foreground Samples', '请选择20个前景样本点')
for run in range(20):
(x, y) = cv2.ginpuit(1)
cv2.circle(pic, (x, y), 1, (0, 0, 255), -1)
train_data_foreground[run, 0] = pic[x, y, 0]
train_data_foreground[run, 1] = pic[x, y, 1]
train_data_foreground[run, 2] = pic[x, y, 2]
# let background be 0 & foreground 1
train_label = np.concatenate((np.zeros(len(train_data_background)), np.ones(len(train_data_foreground))))
# 建立支持向量机
train_data = np.concatenate((train_data_background, train_data_foreground))
model = svm.SVC(kernel='poly', degree=3)
model.fit(train_data, train_label)
# 进行预测,即进行图像分割
(m, n, k) = pic.shape
test_data = pic.reshape((m*n, k))
test_label = model.predict(test_data)
ind = np.reshape(test_label, (m, n))
pic_seg = pic.copy()
pic_seg[ind==0] = 255
# 显示分割结果
cv2.imshow('pic_seg', pic_seg)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
运行时丢失参数,请优化该行代码“labels = som.labels_map ( eeg_signal.reshape ( -1 , 1 ) ).reshape ( -1 )”
非常抱歉,我之前的回答中部分代码存在错误。在这里,我将为您提供修正后的代码。请注意以下示例代码:
```python
import numpy as np
from minisom import MiniSom
import matplotlib.pyplot as plt
# 生成脑电信号
time_length = 1000
sampling_rate = 1000
t = np.arange(0, time_length) / sampling_rate
alpha_wave = np.sin(10 * 2 * np.pi * t)
beta_wave = np.sin(20 * 2 * np.pi * t)
theta_wave = np.sin(5 * 2 * np.pi * t)
delta_wave = np.sin(1 * 2 * np.pi * t)
gamma_wave = np.sin(40 * 2 * np.pi * t)
eeg_signal = alpha_wave + beta_wave + theta_wave + delta_wave + gamma_wave
# 使用SOM进行聚类
som_shape = (10, 10)
input_len = 1
sigma = 1.0
learning_rate = 0.5
som = MiniSom(som_shape[0], som_shape[1], input_len, sigma=sigma, learning_rate=learning_rate)
som.random_weights_init(eeg_signal.reshape(-1, 1))
som.train_random(eeg_signal.reshape(-1, 1), 100)
# 获取每个数据点所属的聚类标签
labels = []
for data in eeg_signal:
winner_coordinates = som.winner(data.reshape(-1, 1))
label = som.labels[winner_coordinates[0], winner_coordinates[1]]
labels.append(label)
labels = np.array(labels)
# 绘制脑电波形图
plt.figure(figsize=(10, 6))
for i in range(som_shape[0] * som_shape[1]):
plt.subplot(som_shape[0], som_shape[1], i + 1)
plt.plot(t, eeg_signal[labels == i])
plt.title('Cluster {}'.format(i))
plt.xlabel('Time')
plt.ylabel('Amplitude')
plt.tight_layout()
plt.show()
```
在这个修正后的代码中,我使用 `som.winner()` 函数来获取每个数据点在SOM中的获胜神经元坐标,并根据这些坐标获取对应的聚类标签。然后,我使用这些标签来绘制脑电波形图。
希望这次的代码能够正确运行并满足您的需求。如果还有任何问题,请随时向我提问。
阅读全文