transformer模型结构概述
时间: 2023-10-09 11:14:12 浏览: 85
Transformer是一种基于自注意力机制的模型,用于处理序列到序列的任务,如机器翻译、文本生成等。Transformer模型的核心是多头注意力机制,通过将输入序列分别映射为多个注意力头,使得模型能够同时关注输入序列中的不同位置和特征。
Transformer模型由编码器和解码器两部分组成。编码器将输入序列映射为一组特征向量,解码器根据这些特征向量生成输出序列。编码器和解码器都由多个相同的层级组成,每个层级都包含了多头注意力机制、前馈神经网络等模块。
在多头注意力机制中,输入序列的每个位置都会产生一个注意力向量,最终将这些向量合并成一个输出向量。每个注意力向量由三部分构成:查询向量、键向量和值向量。查询向量和键向量通过点积操作计算注意力得分,再通过softmax函数得到注意力权重,最后将权重和值向量相乘得到每个位置的注意力向量。
前馈神经网络由两个全连接层和一个激活函数组成,将每个位置的注意力向量映射为一个新的特征向量。在每个层级中,还包含了残差连接和层归一化等技术,从而使得模型更容易训练和优化。
总的来说,Transformer模型通过自注意力机制和多层编码器解码器结构,能够有效地处理序列到序列的任务,取得了在机器翻译等领域的优异表现。
阅读全文