import tensorflow as tf import my_cnn_lstm_model # 导入你自己定义的模型 # 加载模型的权重 model = MyModel() model.load_weights('my_cnn_lstm_model1.h5') # 进行预测 data= data[["本车速度",'车头间距',"原车道前车速度"]] data = data.dropna() print(data.tail())
时间: 2024-01-24 15:17:49 浏览: 82
tensorflow的模型
这段代码的作用是加载你自己定义的 CNN-LSTM 模型,并使用这个模型进行预测。具体来说,代码首先导入 TensorFlow 库和你自己定义的模型,然后调用 `MyModel()` 函数创建一个空的模型对象 `model`。接着,代码调用 `load_weights()` 方法将预先训练好的模型权重从文件 `my_cnn_lstm_model1.h5` 中加载到模型中。
最后,代码使用 `data` 变量存储输入数据,并通过 `dropna()` 方法删除其中包含缺失值的行。最后,通过 `print()` 函数输出 `data` 变量中的最后五行数据。这个过程中,你需要确保 `data` 变量中的数据格式与模型的输入格式相匹配。
阅读全文