Python实现遗传算法GA优化DBN超参数回归预测
时间: 2023-05-29 22:03:57 浏览: 533
DBN Python预测交通流
4星 · 用户满意度95%
遗传算法(GA)是一种优化算法,可以用于优化深度置信网络(DBN)的超参数,并用于回归预测。
以下是用Python实现遗传算法GA优化DBN超参数回归预测的步骤:
1. 定义适应度函数:适应度函数用于评估每个个体的适应度程度。在回归预测中,可以使用均方根误差(RMSE)作为适应度函数。
2. 初始化种群:初始化一组随机的超参数组合作为种群。
3. 选择操作:选择操作用于选择适应度最好的个体。可以使用轮盘赌选择,即根据每个个体的适应度计算选择概率,然后随机选择个体。
4. 交叉操作:交叉操作用于将两个个体的超参数组合进行交叉,生成新的个体。可以使用单点交叉或多点交叉。
5. 变异操作:变异操作用于随机改变个体的某些超参数值,以增加种群的多样性。
6. 重复以上步骤,直到达到预定的迭代次数或满足收敛条件。
7. 输出最优解:输出适应度最好的个体的超参数组合作为最优解,用于DBN的超参数调优。
8. 使用最优解进行回归预测:使用最优解的超参数组合训练DBN模型,并用于回归预测。
下面是一个简单的Python代码示例,用于实现遗传算法GA优化DBN超参数回归预测:
```python
import numpy as np
from sklearn.neural_network import BernoulliRBM
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
# 定义适应度函数
def fitness_function(params, X_train, y_train, X_test, y_test):
dbn = Pipeline(steps=[('rbm', BernoulliRBM(n_components=params['n_components'],
learning_rate=params['learning_rate'],
n_iter=params['n_iter'],
verbose=1)),
('regression', LinearRegression())])
dbn.fit(X_train, y_train)
y_pred = dbn.predict(X_test)
rmse = np.sqrt(mean_squared_error(y_test, y_pred))
return rmse
# 初始化种群
def create_population(pop_size, params_range):
population = []
for i in range(pop_size):
params = {}
for key in params_range:
params[key] = np.random.uniform(params_range[key][0], params_range[key][1])
population.append(params)
return population
# 选择操作
def selection(population, fitness_func):
fitness_scores = [fitness_func(individual) for individual in population]
total_fitness = sum(fitness_scores)
selection_probs = [fitness/total_fitness for fitness in fitness_scores]
selected_indices = np.random.choice(len(population), size=len(population), p=selection_probs, replace=True)
selected_population = [population[i] for i in selected_indices]
return selected_population
# 交叉操作
def crossover(parent1, parent2):
child = {}
for key in parent1:
if np.random.random() < 0.5:
child[key] = parent1[key]
else:
child[key] = parent2[key]
return child
# 变异操作
def mutation(individual, params_range, mutation_rate):
for key in params_range:
if np.random.random() < mutation_rate:
individual[key] = np.random.uniform(params_range[key][0], params_range[key][1])
return individual
# GA优化函数
def optimize(params_range, X_train, y_train, X_test, y_test,
pop_size=50, n_generations=50, mutation_rate=0.1):
population = create_population(pop_size, params_range)
for i in range(n_generations):
population = selection(population, lambda params: fitness_function(params, X_train, y_train, X_test, y_test))
new_population = []
for j in range(pop_size//2):
parent1, parent2 = np.random.choice(population, size=2, replace=False)
child1 = crossover(parent1, parent2)
child2 = crossover(parent2, parent1)
child1 = mutation(child1, params_range, mutation_rate)
child2 = mutation(child2, params_range, mutation_rate)
new_population.extend([child1, child2])
population = new_population
best_individual = min(population, key=lambda params: fitness_function(params, X_train, y_train, X_test, y_test))
return best_individual
# 使用最优解进行回归预测
def predict(params, X_train, y_train, X_test):
dbn = Pipeline(steps=[('rbm', BernoulliRBM(n_components=params['n_components'],
learning_rate=params['learning_rate'],
n_iter=params['n_iter'],
verbose=1)),
('regression', LinearRegression())])
dbn.fit(X_train, y_train)
y_pred = dbn.predict(X_test)
return y_pred
# 示例
if __name__ == '__main__':
# 生成随机数据
X = np.random.rand(1000, 10)
y = np.random.rand(1000)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# 定义超参数搜索范围
params_range = {'n_components': [10, 100],
'learning_rate': [0.01, 0.1],
'n_iter': [10, 100]}
# 使用遗传算法优化DBN超参数
best_params = optimize(params_range, X_train, y_train, X_test, y_test)
# 使用最优解进行预测
y_pred = predict(best_params, X_train, y_train, X_test)
rmse = np.sqrt(mean_squared_error(y_test, y_pred))
print('RMSE:', rmse)
print('Best params:', best_params)
```
阅读全文