在天池实验室基于cifar10数据集建立alexnet结构并用d2l中的d2l.train_ch6函数显示
时间: 2024-03-20 19:41:21 浏览: 159
tianchi O2O: xgb_predict_file-数据集
好的,我可以回答你的问题并提供相应的Python代码。
首先,我们需要导入所需的Python库和模块:
```python
import tensorflow as tf
from tensorflow.keras.datasets import cifar10
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
from tensorflow.keras.models import Sequential
from tensorflow.keras.optimizers import SGD
from tensorflow.keras.utils import to_categorical
import numpy as np
import matplotlib.pyplot as plt
import d2l
```
然后,我们需要加载CIFAR-10数据集,并将其归一化:
```python
(train_images, train_labels), (test_images, test_labels) = cifar10.load_data()
train_images = train_images.astype('float32') / 255
test_images = test_images.astype('float32') / 255
```
接下来,我们需要对标签进行独热编码:
```python
num_classes = 10
train_labels = to_categorical(train_labels, num_classes)
test_labels = to_categorical(test_labels, num_classes)
```
然后,我们可以建立AlexNet模型:
```python
model = Sequential([
Conv2D(filters=96, kernel_size=(11,11), strides=(4,4), activation='relu', input_shape=(32,32,3)),
MaxPooling2D(pool_size=(3,3), strides=(2,2)),
Conv2D(filters=256, kernel_size=(5,5), strides=(1,1), activation='relu', padding="same"),
MaxPooling2D(pool_size=(3,3), strides=(2,2)),
Conv2D(filters=384, kernel_size=(3,3), strides=(1,1), activation='relu', padding="same"),
Conv2D(filters=384, kernel_size=(3,3), strides=(1,1), activation='relu', padding="same"),
Conv2D(filters=256, kernel_size=(3,3), strides=(1,1), activation='relu', padding="same"),
MaxPooling2D(pool_size=(3,3), strides=(2,2)),
Flatten(),
Dense(units=4096, activation='relu'),
Dropout(0.5),
Dense(units=4096, activation='relu'),
Dropout(0.5),
Dense(units=num_classes, activation='softmax')
])
```
接下来,我们需要定义优化器、损失函数和评估指标:
```python
lr, num_epochs, batch_size = 0.01, 10, 256
optimizer = SGD(learning_rate=lr)
loss = 'categorical_crossentropy'
metric = 'accuracy'
model.compile(optimizer=optimizer, loss=loss, metrics=[metric])
```
然后,我们可以使用d2l中的`d2l.train_ch6`函数来训练模型:
```python
train_iter = tf.data.Dataset.from_tensor_slices((train_images, train_labels)).batch(batch_size)
test_iter = tf.data.Dataset.from_tensor_slices((test_images, test_labels)).batch(batch_size)
history = model.fit(train_iter, epochs=num_epochs, validation_data=test_iter)
```
最后,我们可以使用d2l中的`d2l.plot_history`函数来绘制训练和验证精度随时间的变化情况:
```python
d2l.plot_history(history, ('accuracy', 'val_accuracy'))
```
完整代码如下所示:
```python
import tensorflow as tf
from tensorflow.keras.datasets import cifar10
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
from tensorflow.keras.models import Sequential
from tensorflow.keras.optimizers import SGD
from tensorflow.keras.utils import to_categorical
import numpy as np
import matplotlib.pyplot as plt
import d2l
(train_images, train_labels), (test_images, test_labels) = cifar10.load_data()
train_images = train_images.astype('float32') / 255
test_images = test_images.astype('float32') / 255
num_classes = 10
train_labels = to_categorical(train_labels, num_classes)
test_labels = to_categorical(test_labels, num_classes)
model = Sequential([
Conv2D(filters=96, kernel_size=(11,11), strides=(4,4), activation='relu', input_shape=(32,32,3)),
MaxPooling2D(pool_size=(3,3), strides=(2,2)),
Conv2D(filters=256, kernel_size=(5,5), strides=(1,1), activation='relu', padding="same"),
MaxPooling2D(pool_size=(3,3), strides=(2,2)),
Conv2D(filters=384, kernel_size=(3,3), strides=(1,1), activation='relu', padding="same"),
Conv2D(filters=384, kernel_size=(3,3), strides=(1,1), activation='relu', padding="same"),
Conv2D(filters=256, kernel_size=(3,3), strides=(1,1), activation='relu', padding="same"),
MaxPooling2D(pool_size=(3,3), strides=(2,2)),
Flatten(),
Dense(units=4096, activation='relu'),
Dropout(0.5),
Dense(units=4096, activation='relu'),
Dropout(0.5),
Dense(units=num_classes, activation='softmax')
])
lr, num_epochs, batch_size = 0.01, 10, 256
optimizer = SGD(learning_rate=lr)
loss = 'categorical_crossentropy'
metric = 'accuracy'
model.compile(optimizer=optimizer, loss=loss, metrics=[metric])
train_iter = tf.data.Dataset.from_tensor_slices((train_images, train_labels)).batch(batch_size)
test_iter = tf.data.Dataset.from_tensor_slices((test_images, test_labels)).batch(batch_size)
history = model.fit(train_iter, epochs=num_epochs, validation_data=test_iter)
d2l.plot_history(history, ('accuracy', 'val_accuracy'))
```
希望能帮助到你!
阅读全文