TD3算法和SAC算法
时间: 2023-12-14 16:34:27 浏览: 331
TD3算法和SAC算法都是强化学习中的算法,用于解决连续控制任务。下面是对这两种算法的介绍:
1. TD3算法(Twin Delayed Deep Deterministic Policy Gradient)
TD3算法是一种基于DDPG算法的进版本,它通过使用三个不同的神经网络来估计动作值函数,以减少过估计的问题。此外,TD3还使用了延迟更新策略,即每隔一定时间更新目标网络,以提高算法的稳定性。TD3算法在许多连续控制任务中表现出色。
2. SAC算法(Soft Actor-Critic)
SAC算法是一种基于最大熵理论的强化学习算法,它通过最大化策略的熵来促进探索,从而提高算法的性能。此外,SAC还使用了自适应温度参数,以平衡探索和利用之间的权衡。SAC算法在许多连续控制任务中表现出色,并且具有较好的鲁棒性。
相关问题
基于TD3的SAC
以下是基于TD3的SAC算法的简单实现,使用Python和TensorFlow框架:
```python
import tensorflow as tf
import numpy as np
class TD3_SAC:
def __init__(self, state_dim, action_dim, max_action):
self.state_dim = state_dim
self.action_dim = action_dim
self.max_action = max_action
# Actor network
self.actor = self.build_actor_network()
self.actor_target = self.build_actor_network()
self.actor_target.set_weights(self.actor.get_weights())
# Critic networks
self.critic_1 = self.build_critic_network()
self.critic_2 = self.build_critic_network()
self.critic_1_target = self.build_critic_network()
self.critic_2_target = self.build_critic_network()
self.critic_1_target.set_weights(self.critic_1.get_weights())
self.critic_2_target.set_weights(self.critic_2.get_weights())
# Replay buffer
self.buffer = ReplayBuffer()
# Hyperparameters
self.gamma = 0.99
self.tau = 0.005
self.alpha = 0.2
self.policy_noise = 0.2 * self.max_action
self.noise_clip = 0.5 * self.max_action
self.policy_freq = 2
self.batch_size = 256
# Optimizers
self.actor_optimizer = tf.keras.optimizers.Adam(learning_rate=3e-4)
self.critic_optimizer_1 = tf.keras.optimizers.Adam(learning_rate=3e-4)
self.critic_optimizer_2 = tf.keras.optimizers.Adam(learning_rate=3e-4)
def build_actor_network(self):
inputs = tf.keras.layers.Input(shape=(self.state_dim,))
x = tf.keras.layers.Dense(256, activation='relu')(inputs)
x = tf.keras.layers.Dense(256, activation='relu')(x)
outputs = tf.keras.layers.Dense(self.action_dim, activation='tanh')(x)
outputs = outputs * self.max_action
return tf.keras.Model(inputs=inputs, outputs=outputs)
def build_critic_network(self):
state_inputs = tf.keras.layers.Input(shape=(self.state_dim,))
action_inputs = tf.keras.layers.Input(shape=(self.action_dim,))
x = tf.keras.layers.Concatenate()([state_inputs, action_inputs])
x = tf.keras.layers.Dense(256, activation='relu')(x)
x = tf.keras.layers.Dense(256, activation='relu')(x)
outputs = tf.keras.layers.Dense(1)(x)
return tf.keras.Model(inputs=[state_inputs, action_inputs], outputs=outputs)
def select_action(self, state):
state = np.expand_dims(state, axis=0)
action = self.actor(state).numpy()[0]
return action
def train(self):
if len(self.buffer) < self.batch_size:
return
state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.buffer.sample(self.batch_size)
# Target actions
next_action_batch = self.actor_target(next_state_batch).numpy()
noise = np.random.normal(0, self.policy_noise, size=next_action_batch.shape)
noise = np.clip(noise, -self.noise_clip, self.noise_clip)
next_action_batch = next_action_batch + noise
next_action_batch = np.clip(next_action_batch, -self.max_action, self.max_action)
# Target Q values
q1_target = self.critic_1_target([next_state_batch, next_action_batch]).numpy()
q2_target = self.critic_2_target([next_state_batch, next_action_batch]).numpy()
q_target = np.minimum(q1_target, q2_target)
q_target = reward_batch + (1 - done_batch) * self.gamma * q_target
# Update critics
with tf.GradientTape(persistent=True) as tape:
q1 = self.critic_1([state_batch, action_batch])
q2 = self.critic_2([state_batch, action_batch])
critic_loss_1 = tf.reduce_mean(tf.square(q1 - q_target))
critic_loss_2 = tf.reduce_mean(tf.square(q2 - q_target))
grad_1 = tape.gradient(critic_loss_1, self.critic_1.trainable_variables)
grad_2 = tape.gradient(critic_loss_2, self.critic_2.trainable_variables)
self.critic_optimizer_1.apply_gradients(zip(grad_1, self.critic_1.trainable_variables))
self.critic_optimizer_2.apply_gradients(zip(grad_2, self.critic_2.trainable_variables))
# Update actor
with tf.GradientTape() as tape:
policy_action = self.actor(state_batch)
actor_loss = -tf.reduce_mean(self.critic_1([state_batch, policy_action]))
actor_loss += self.alpha * tf.reduce_mean(tf.math.log(self.actor(state_batch) + 1e-6))
grad = tape.gradient(actor_loss, self.actor.trainable_variables)
self.actor_optimizer.apply_gradients(zip(grad, self.actor.trainable_variables))
# Update target networks
self.actor_target.set_weights(self.tau * np.array(self.actor.get_weights()) +
(1 - self.tau) * np.array(self.actor_target.get_weights()))
self.critic_1_target.set_weights(self.tau * np.array(self.critic_1.get_weights()) +
(1 - self.tau) * np.array(self.critic_1_target.get_weights()))
self.critic_2_target.set_weights(self.tau * np.array(self.critic_2.get_weights()) +
(1 - self.tau) * np.array(self.critic_2_target.get_weights()))
def save_model(self, path):
self.actor.save_weights(path + 'actor')
self.actor_target.save_weights(path + 'actor_target')
self.critic_1.save_weights(path + 'critic_1')
self.critic_2.save_weights(path + 'critic_2')
self.critic_1_target.save_weights(path + 'critic_1_target')
self.critic_2_target.save_weights(path + 'critic_2_target')
def load_model(self, path):
self.actor.load_weights(path + 'actor')
self.actor_target.load_weights(path + 'actor_target')
self.critic_1.load_weights(path + 'critic_1')
self.critic_2.load_weights(path + 'critic_2')
self.critic_1_target.load_weights(path + 'critic_1_target')
self.critic_2_target.load_weights(path + 'critic_2_target')
```
在这个代码中,我们定义了一个名为`TD3_SAC`的类,它包括了一个actor网络,两个critic网络(分别对应Q1和Q2),以及它们各自的target网络。我们还定义了一个replay buffer,用于存储样本。
在训练过程中,我们首先从replay buffer中采样一批样本,并计算目标Q值和目标动作。然后,我们使用这些样本更新critic网络的参数。接下来,我们使用actor网络和当前状态计算出一个动作,并用critic网络计算出该动作的Q值。我们使用这个Q值更新actor网络的参数。最后,我们使用soft更新方法更新target网络的参数。
在实践中,您可能需要根据您的具体问题调整超参数,以获得更好的性能。除此之外,您还可以使用其他技巧,如延迟更新、target policy smoothing等,以进一步改进算法的性能。
阅读全文