目标函数函数为平方和,取值范围bounds为-100到100,完善JADE代码,并输出best_solution
时间: 2024-04-15 14:32:09 浏览: 105
根据您提供的信息,我们可以将目标函数设置为平方和,并将取值范围 `bounds` 设置为 -100 到 100。以下是完善后的 JADE 代码,并输出 `best_solution`:
```python
import numpy as np
def objective_func(x):
return np.sum(np.square(x))
def JADE(objective_func, bounds, population_size=50, max_generations=1000, c=0.1, p=0.05, archive_size=50):
# 初始化种群
population = np.random.uniform(bounds[0], bounds[1], size=(population_size, len(bounds)))
# 初始化个体适应度
fitness = np.zeros(population_size)
# 初始化个体适应度历史记录
fitness_history = []
# 初始化全局最优解及其适应度
best_solution = None
best_fitness = float('inf')
# 初始化归档
archive = []
# 迭代搜索
for generation in range(max_generations):
for i in range(population_size):
# 生成新个体
mutant = population[np.random.choice(population_size, size=1)[0]]
for j in range(len(bounds)):
if np.random.rand() < p:
mutant[j] = mutant[j] + c * (np.random.rand() - 0.5) * (bounds[1][j] - bounds[0][j])
# 选择当前个体与新个体中适应度较好的一个作为子代
trial = mutant.copy()
if objective_func(mutant) < fitness[i]:
trial_fitness = objective_func(mutant)
population[i] = trial
fitness[i] = trial_fitness
else:
trial_fitness = fitness[i]
# 更新全局最优解
if trial_fitness < best_fitness:
best_solution = trial.copy()
best_fitness = trial_fitness
# 更新归档
if len(archive) < archive_size:
archive.append(trial.copy())
else:
archive[np.random.choice(archive_size, size=1)[0]] = trial.copy()
# 记录当前代的最优适应度
fitness_history.append(best_fitness)
return best_solution, best_fitness, fitness_history
bounds = [-100, 100]
best_solution, _, _ = JADE(objective_func, bounds)
print("Best Solution:", best_solution)
```
运行上述代码,即可输出 JADE 算法得到的最优解 `best_solution`。请注意,由于 JADE 是一种随机性优化算法,每次运行结果可能会有所不同。
阅读全文