用pytorch实现一个带有残差结构的图神经网络
时间: 2023-07-18 20:06:53 浏览: 165
好的,下面是一个使用PyTorch实现带有残差结构的图神经网络的示例代码:
```
import torch
import torch.nn as nn
import torch.nn.functional as F
class GraphConvolution(nn.Module):
"""
Graph Convolution layer.
"""
def __init__(self, in_features, out_features):
super(GraphConvolution, self).__init__()
self.weight = nn.Parameter(torch.FloatTensor(in_features, out_features))
self.bias = nn.Parameter(torch.FloatTensor(out_features))
self.reset_parameters()
def reset_parameters(self):
stdv = 1. / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input, adj):
support = torch.matmul(input, self.weight)
output = torch.matmul(adj, support)
return output + self.bias
class ResidualBlock(nn.Module):
"""
Residual Block.
"""
def __init__(self, in_features, out_features):
super(ResidualBlock, self).__init__()
self.conv1 = GraphConvolution(in_features, out_features)
self.conv2 = GraphConvolution(out_features, out_features)
if in_features != out_features:
self.residual = GraphConvolution(in_features, out_features)
else:
self.residual = None
def forward(self, input, adj):
x = F.relu(self.conv1(input, adj))
x = self.conv2(x, adj)
if self.residual is not None:
residual = self.residual(input, adj)
else:
residual = input
output = x + residual
return F.relu(output)
class GCN(nn.Module):
"""
Graph Convolutional Network.
"""
def __init__(self, nfeat, nhid, nclass, dropout):
super(GCN, self).__init__()
self.gc1 = GraphConvolution(nfeat, nhid)
self.gc2 = GraphConvolution(nhid, nclass)
self.dropout = dropout
self.residual1 = ResidualBlock(nfeat, nhid)
self.residual2 = ResidualBlock(nhid, nclass)
def forward(self, x, adj):
x = F.relu(self.gc1(x, adj))
x = F.dropout(x, self.dropout, training=self.training)
x = self.residual1(x, adj)
x = F.dropout(x, self.dropout, training=self.training)
x = self.residual2(x, adj)
x = self.gc2(x, adj)
return F.log_softmax(x, dim=1)
```
在上述代码中,我们定义了三个类:
1. `GraphConvolution`:图卷积层,将输入与权重相乘得到支持度,然后通过邻接矩阵与支持度相乘得到输出。
2. `ResidualBlock`:残差块,由两个图卷积层构成。如果输入和输出的特征数量不同,我们需要使用一个额外的图卷积层来转换输入维度。
3. `GCN`:图卷积网络,由两个图卷积层和两个残差块组成。在前向传递期间,我们对第一个图卷积层的输出进行ReLU,并使用dropout进行正则化,然后将其传递到第一个残差块。我们重复这个过程,直到最后一个残差块,然后将其传递到第二个图卷积层,最后通过log_softmax来获得输出。
希望这能够帮助你实现带有残差结构的图神经网络。
阅读全文