使用卷积神经网络对手写数字数据集进行识别,本实验取训练样本55000个,分成550批,每批为100个样本。网络训练过程中,每完成50次迭代输出训练误差,当网络训练完成后输出测试集准确率。

时间: 2023-05-03 11:00:30 浏览: 52
这段文本可能在介绍使用卷积神经网络对手写数字数据集进行识别的实验。该数据集有55000个样本,分成550个批次,每批次有100个样本。在网络训练过程中,每完成50次迭代输出一次训练误差,直到网络训练完成后输出测试集准确率。
相关问题

在Matlab中如何基于卷积神经网络对手写数字进行识别,所采用的手写数字数据集为MNIST

要基于卷积神经网络对MNIST数据集中的手写数字进行识别,可以按照以下步骤进行: 1. 下载并加载MNIST数据集:可以使用Matlab内置的函数 `digitDataset` 来下载和加载MNIST数据集。这个函数会返回一个 `ImageDatastore` 对象,其中包含了训练和测试数据。 2. 定义卷积神经网络模型:可以使用Matlab内置的 `convolution2dLayer`、`maxPooling2dLayer`、`fullyConnectedLayer` 等函数来定义卷积神经网络模型。根据MNIST数据集的特点,可以考虑使用几个卷积层和池化层,最后接上一个或多个全连接层。 3. 训练卷积神经网络模型:可以使用Matlab内置的 `trainNetwork` 函数来训练卷积神经网络模型。在训练之前,需要指定训练参数,如学习率、批大小、最大训练轮数等。 4. 测试卷积神经网络模型:可以使用Matlab内置的 `classify` 函数来测试卷积神经网络模型的准确率。该函数会对测试数据集中的每个样本进行分类,并返回预测结果。 下面是一个简单的示例代码,用于基于卷积神经网络对MNIST数据集中的手写数字进行识别: ```matlab % 加载MNIST数据集 digitDatasetPath = fullfile(matlabroot,'toolbox','nnet','nndemos', ... 'nndatasets','DigitDataset'); digitData = imageDatastore(digitDatasetPath, ... 'IncludeSubfolders',true,'LabelSource','foldernames'); % 定义卷积神经网络模型 layers = [ imageInputLayer([28 28 1]) convolution2dLayer(5,20) reluLayer maxPooling2dLayer(2,'Stride',2) convolution2dLayer(5,50) reluLayer maxPooling2dLayer(2,'Stride',2) fullyConnectedLayer(500) reluLayer fullyConnectedLayer(10) softmaxLayer classificationLayer]; % 指定训练参数 options = trainingOptions('sgdm', ... 'MaxEpochs',20, ... 'MiniBatchSize',64, ... 'InitialLearnRate',0.1); % 训练卷积神经网络模型 net = trainNetwork(digitData,layers,options); % 测试卷积神经网络模型 [testImages,testLabels] = digitDataTest(); predictedLabels = classify(net,testImages); accuracy = sum(predictedLabels == testLabels)/numel(testLabels); disp("Test accuracy: " + accuracy); ``` 这段代码会下载MNIST数据集,并使用一个包含两个卷积层、两个池化层和两个全连接层的卷积神经网络模型进行训练和测试。训练过程会持续20轮,每轮使用64个样本进行训练。最终输出测试准确率。

利用卷积神经网络实现手写数字识别,使用两种不同的神经网络进行训练并比较测试结果

对于手写数字识别任务,可以使用卷积神经网络(Convolutional Neural Network, CNN)进行训练和测试。下面介绍两种不同的CNN网络结构来完成手写数字识别任务。 ## LeNet-5 LeNet-5是一个经典的CNN网络,是Yann LeCun等人在1998年提出的。它的网络结构如下: ![LeNet-5](https://img-blog.csdn.net/2018051510011070?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3N1cHBvcnRfYmxvZy9mbGFzaF9pbWFnZS5wbmc=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/q/80) 输入层接收28x28的手写数字图像,经过卷积、池化、卷积、池化、全连接等多个层次的计算,最终输出10个数字的概率。在训练时,使用交叉熵损失函数和随机梯度下降法进行优化。 ## AlexNet AlexNet是2012年ImageNet大规模视觉识别挑战赛的冠军网络,是一个非常深的CNN网络。它的网络结构如下: ![AlexNet](https://img-blog.csdn.net/20180515100058889?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3N1cHBvcnRfYmxvZy9mbGFzaF9pbWFnZS5wbmc=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/q/80) 与LeNet-5相比,AlexNet网络更深、更宽,且使用了Dropout和ReLU等技术来防止过拟合。在训练时,同样使用交叉熵损失函数和随机梯度下降法进行优化。 ## 比较测试结果 使用MNIST数据集对LeNet-5和AlexNet进行训练和测试,比较它们的准确率。MNIST数据集包含60,000个训练样本和10,000个测试样本,每个样本都是28x28的手写数字图像。 在实验中,我们可以使用TensorFlow或PyTorch等框架来实现这两个CNN网络,并使用相同的数据集进行训练和测试。比较它们的准确率和训练时间等指标,可以得到它们的优缺点和适用场景。 总的来说,LeNet-5适用于较简单的手写数字识别任务,而AlexNet适用于更复杂的图像识别任务,如ImageNet数据集。但是,在实际应用中,我们也需要考虑网络的速度、大小和可扩展性等因素。

相关推荐

最新推荐

recommend-type

Python通过TensorFlow卷积神经网络实现猫狗识别

在本文中,我们将探讨如何使用Python和TensorFlow构建一个卷积神经网络(CNN)来实现猫狗图像的识别。这是一个常见的计算机视觉任务,通常用于初学者熟悉深度学习和CNNs。我们将按照以下步骤进行: 1. **数据处理**...
recommend-type

基于卷积神经网络的高光谱图像深度特征提取与分类.docx

实验部分,该方法在印度松树、帕维亚大学和肯尼迪航天中心三个标准HSI数据集上进行了验证,结果表明,提出的具有稀疏约束的CNN模型在分类性能上超越了现有的竞争方法。此外,该研究也为HSI深度特征提取的进一步研究...
recommend-type

基于卷积神经网络VGG16模型花卉分类与手势识别.docx

卷积神经网络(CNN)是深度学习领域中的关键模型,尤其在图像识别和分类任务上表现出色。VGG16模型是由牛津大学视觉几何组(Visual Geometry Group)开发的,是2014年ImageNet挑战赛的有力竞争者。它的主要特点是...
recommend-type

python数据预处理 :样本分布不均的解决(过采样和欠采样)

样本分布不均衡就是指样本差异非常大,例如共1000条数据样本的数据集中,其中占有10条样本分类,其特征无论如何你和也无法实现完整特征值的覆盖,此时属于严重的样本分布不均衡。 为何要解决样本分布不均: 样本分部...
recommend-type

MATLAB 人工智能实验设计 基于BP神经网络的鸢尾花分类器设计

每个样本包含了五个元素,其中前四个为特征特征元素,分别为花萼长度、花萼宽度、花瓣长度、花瓣宽度,最后一个为品种信息,即目标属性(也叫target或label。包括山鸢尾Setosa、变色鸢尾Versicolour和维吉尼亚鸢尾...
recommend-type

基于嵌入式ARMLinux的播放器的设计与实现 word格式.doc

本文主要探讨了基于嵌入式ARM-Linux的播放器的设计与实现。在当前PC时代,随着嵌入式技术的快速发展,对高效、便携的多媒体设备的需求日益增长。作者首先深入剖析了ARM体系结构,特别是针对ARM9微处理器的特性,探讨了如何构建适用于嵌入式系统的嵌入式Linux操作系统。这个过程包括设置交叉编译环境,优化引导装载程序,成功移植了嵌入式Linux内核,并创建了适合S3C2410开发板的根文件系统。 在考虑到嵌入式系统硬件资源有限的特点,通常的PC机图形用户界面(GUI)无法直接应用。因此,作者选择了轻量级的Minigui作为研究对象,对其实体架构进行了研究,并将其移植到S3C2410开发板上,实现了嵌入式图形用户界面,使得系统具有简洁而易用的操作界面,提升了用户体验。 文章的核心部分是将通用媒体播放器Mplayer移植到S3C2410开发板上。针对嵌入式环境中的音频输出问题,作者针对性地解决了Mplayer播放音频时可能出现的不稳定性,实现了音乐和视频的无缝播放,打造了一个完整的嵌入式多媒体播放解决方案。 论文最后部分对整个项目进行了总结,强调了在嵌入式ARM-Linux平台上设计播放器所取得的成果,同时也指出了一些待改进和完善的方面,如系统性能优化、兼容性提升以及可能的扩展功能等。关键词包括嵌入式ARM-Linux、S3C2410芯片、Mplayer多媒体播放器、图形用户界面(GUI)以及Minigui等,这些都反映出本文研究的重点和领域。 通过这篇论文,读者不仅能了解到嵌入式系统与Linux平台结合的具体实践,还能学到如何在资源受限的环境中设计和优化多媒体播放器,为嵌入式技术在多媒体应用领域的进一步发展提供了有价值的经验和参考。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Python字符串为空判断的动手实践:通过示例掌握技巧

![Python字符串为空判断的动手实践:通过示例掌握技巧](https://img-blog.csdnimg.cn/72f88d4fc1164d6c8b9c29d8ab5ed75c.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBASGFyYm9yIExhdQ==,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. Python字符串为空判断的基础理论 字符串为空判断是Python编程中一项基本且重要的任务。它涉及检查字符串是否为空(不包含任何字符),这在
recommend-type

box-sizing: border-box;作用是?

`box-sizing: border-box;` 是 CSS 中的一个样式属性,它改变了元素的盒模型行为。默认情况下,浏览器会计算元素内容区域(content)、内边距(padding)和边框(border)的总尺寸,也就是所谓的"标准盒模型"。而当设置为 `box-sizing: border-box;` 后,元素的总宽度和高度会包括内容、内边距和边框的总空间,这样就使得开发者更容易控制元素的实际布局大小。 具体来说,这意味着: 1. 内容区域的宽度和高度不会因为添加内边距或边框而自动扩展。 2. 边框和内边距会从元素的总尺寸中减去,而不是从内容区域开始计算。
recommend-type

经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf

本文主要探讨的是"经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf",该研究专注于嵌入式指纹识别技术在实际应用中的设计和实现。嵌入式指纹识别系统因其独特的优势——无需外部设备支持,便能独立完成指纹识别任务,正逐渐成为现代安全领域的重要组成部分。 在技术背景部分,文章指出指纹的独特性(图案、断点和交叉点的独一无二性)使其在生物特征认证中具有很高的可靠性。指纹识别技术发展迅速,不仅应用于小型设备如手机或门禁系统,也扩展到大型数据库系统,如连接个人电脑的桌面应用。然而,桌面应用受限于必须连接到计算机的条件,嵌入式系统的出现则提供了更为灵活和便捷的解决方案。 为了实现嵌入式指纹识别,研究者首先构建了一个专门的开发平台。硬件方面,详细讨论了电源电路、复位电路以及JTAG调试接口电路的设计和实现,这些都是确保系统稳定运行的基础。在软件层面,重点研究了如何在ARM芯片上移植嵌入式操作系统uC/OS-II,这是一种实时操作系统,能够有效地处理指纹识别系统的实时任务。此外,还涉及到了嵌入式TCP/IP协议栈的开发,这是实现系统间通信的关键,使得系统能够将采集的指纹数据传输到远程服务器进行比对。 关键词包括:指纹识别、嵌入式系统、实时操作系统uC/OS-II、TCP/IP协议栈。这些关键词表明了论文的核心内容和研究焦点,即围绕着如何在嵌入式环境中高效、准确地实现指纹识别功能,以及与外部网络的无缝连接。 这篇论文不仅深入解析了嵌入式指纹识别系统的硬件架构和软件策略,而且还展示了如何通过结合嵌入式技术和先进操作系统来提升系统的性能和安全性,为未来嵌入式指纹识别技术的实际应用提供了有价值的研究成果。