curve_colors = # 曲线颜色有几种,选6个颜色鲜艳并不相同的

时间: 2024-02-11 14:09:51 浏览: 13
你可以将`curve_colors`定义为一个包含6种不同颜色的列表,例如: ```python curve_colors = ['r', 'g', 'b', 'c', 'm', 'y'] ``` 在上面的代码中,我们使用了6种不同的颜色,分别为红、绿、蓝、青、洋红和黄。如果你想要使用这些颜色来绘制曲线,可以按照以下方式调用`PlotWidget.plot()`方法: ```python import pyqtgraph as pg # 创建一个PlotWidget对象 pw = pg.PlotWidget() # 定义一组颜色 curve_colors = ['r', 'g', 'b', 'c', 'm', 'y'] # 绘制一组曲线,使用不同的颜色 for i in range(6): pw.plot([1, 2, 3, 4, 5], [i+1, i+2, i+3, i+4, i+5], pen=pg.mkPen(color=curve_colors[i], width=2)) # 显示窗口 pw.show() ``` 在上面的代码中,我们首先定义了一个包含6种颜色的列表`curve_colors`,然后在绘制曲线时,使用不同的颜色进行绘制。需要注意的是,`pg.mkPen()`函数的`color`参数需要传入字符串颜色名称,因此我们可以直接从`curve_colors`列表中取出对应的颜色名称。
相关问题

curve_colors = ['r', 'g', 'b', 'c', 'm', 'y'] # 曲线颜色有几种,选6个颜色鲜艳并不相同的

在PyQtGraph中,可以使用以下方式来定义一组颜色: ```python from pyqtgraph import QtGui colors = [ QtGui.QColor(255, 0, 0), # 红色 QtGui.QColor(0, 255, 0), # 绿色 QtGui.QColor(0, 0, 255), # 蓝色 QtGui.QColor(0, 255, 255), # 青色 QtGui.QColor(255, 0, 255), # 紫色 QtGui.QColor(255, 255, 0), # 黄色 ] ``` 上面的代码定义了一组6种颜色,分别为红、绿、蓝、青、紫和黄。如果你想要使用这些颜色来绘制曲线,可以按照以下方式调用`PlotWidget.plot()`方法: ```python import pyqtgraph as pg # 创建一个PlotWidget对象 pw = pg.PlotWidget() # 定义一组颜色 colors = [ pg.mkColor('r'), pg.mkColor('g'), pg.mkColor('b'), pg.mkColor('c'), pg.mkColor('m'), pg.mkColor('y'), ] # 绘制一组曲线,使用不同的颜色 for i in range(6): pw.plot([1, 2, 3, 4, 5], [i+1, i+2, i+3, i+4, i+5], pen=pg.mkPen(color=colors[i], width=2)) # 显示窗口 pw.show() ``` 在上面的代码中,我们首先使用`pg.mkColor()`函数定义了一组颜色,然后在绘制曲线时,使用不同的颜色进行绘制。需要注意的是,`pg.mkPen()`函数的`color`参数需要传入`QColor`对象,因此我们需要使用`pg.mkColor()`函数将字符串颜色转换为`QColor`对象。

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 将字符标签转换为数值标签 le = LabelEncoder() y = le.fit_transform(y) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 构建多分类模型 model = RandomForestClassifier(n_estimators=10, max_depth=5, random_state=42) model.fit(X_train, y_train) # 在测试集上预测每个标签的概率 y_pred = model.predict(X_test) # # 计算micro-averaging的ROC曲线数据 fpr, tpr, _ = roc_curve(y_test, y_pred) roc_auc = auc(fpr, tpr)将此段代码按上述修改

根据上述修改,将代码修改为: ```python from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from sklearn.multiclass import OneVsRestClassifier from sklearn.metrics import roc_curve, auc from sklearn.ensemble import RandomForestClassifier # 将字符标签转换为数值标签 le = LabelEncoder() y = le.fit_transform(y) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 定义分类器和OneVsRest分类器 clf = RandomForestClassifier(n_estimators=10, max_depth=5, random_state=42) ovr = OneVsRestClassifier(clf) # 训练分类器 ovr.fit(X_train, y_train) # 预测测试集数据 y_score = ovr.predict_proba(X_test) # 计算每个类别的ROC曲线和AUC fpr, tpr, roc_auc = dict(), dict(), dict() n_classes = y_bin.shape[1] for i in range(n_classes): fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i]) roc_auc[i] = auc(fpr[i], tpr[i]) # 计算micro-averaging的ROC曲线数据 fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), y_score.ravel()) roc_auc["micro"] = auc(fpr["micro"], tpr["micro"]) ``` 这里使用了`LabelEncoder`将字符标签转换为数值标签,并使用`OneVsRestClassifier`来实现"一对多"策略。最后计算了每个类别的ROC曲线和AUC,并计算了micro-averaging的ROC曲线数据。

相关推荐

# 导入相关库 import pandas as pd import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score,roc_auc_score,roc_curve # 读取数据 df = pd.read_csv('C:/Users/E15/Desktop/机器学习作业/第一次作业/第一次作业/三个数据集/Titanic泰坦尼克号.csv') # 数据预处理 df = df.drop(["Name", "Ticket", "Cabin"], axis=1) # 删除无用特征 df = pd.get_dummies(df, columns=["Sex", "Embarked"]) # 将分类特征转换成独热编码 df = df.fillna(df.mean()) # 使用平均值填充缺失值 # 划分数据集 X = df.drop(["Survived"], axis=1) y = df["Survived"] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 决策树 dtc = DecisionTreeClassifier(random_state=42) dtc.fit(X_train, y_train) y_pred_dtc = dtc.predict(X_test) # 剪枝决策树 pruned_dtc = DecisionTreeClassifier(random_state=42, ccp_alpha=0.015) pruned_dtc.fit(X_train, y_train) y_pred_pruned_dtc = pruned_dtc.predict(X_test) # 随机森林 rfc = RandomForestClassifier(n_estimators=100, random_state=42) rfc.fit(X_train, y_train) y_pred_rfc = rfc.predict(X_test) # 计算评价指标 metrics = {"Accuracy": accuracy_score, "Precision": precision_score, "Recall": recall_score, "F1-Score": f1_score, "AUC": roc_auc_score} results = {} for key in metrics.keys(): if key == "AUC": results[key] = {"Decision Tree": roc_auc_score(y_test, y_pred_dtc), "Pruned Decision Tree": roc_auc_score(y_test, y_pred_pruned_dtc), "Random Forest": roc_auc_score(y_test, y_pred_rfc)} else: results[key] = {"Decision Tree": metrics[key](y_test, y_pred_dtc), "Pruned Decision Tree": metrics[key](y_test, y_pred_pruned_dtc), "Random Forest": metrics[key](y_test, y_pred_rfc)} # 打印评价指标的表格 results_df = pd.DataFrame(results) print(results_df)怎么打印auv图

# 导入模块 import prettytable as pt from sklearn.metrics import accuracy_score from sklearn.metrics import precision_score from sklearn.metrics import recall_score, f1_score from sklearn.metrics import roc_curve, auc # 创建表格对象 table = pt.PrettyTable() # 设置表格的列名 table.field_names = ["acc", "precision", "recall", "f1", "roc_auc"] # 循环添加数据 # 20个随机状态 for i in range(1): # # GBDT GBDT = GradientBoostingClassifier(learning_rate=0.1, min_samples_leaf=14, min_samples_split=6, max_depth=10, random_state=i, n_estimators=267 ) # GBDT = GradientBoostingClassifier(learning_rate=0.1, n_estimators=142,min_samples_leaf=80,min_samples_split=296,max_depth=7 , max_features='sqrt', random_state=66 # ) GBDT.fit(train_x, train_y) y_pred = GBDT.predict(test_x) # y_predprob = GBDT.predict_proba(test_x) print(y_pred) print('AUC Score:%.4g' % metrics.roc_auc_score(test_y.values, y_pred)) # print('AUC Score (test): %f' %metrics.roc_auc_score(test_y.values,y_predprob[:,1])) accuracy = GBDT.score(val_x, val_y) accuracy1 = GBDT.score(test_x, test_y) print("GBDT最终精确度:{},{}".format(accuracy, accuracy1)) y_predict3 = GBDT.predict(test_x) get_score(test_y, y_predict3, model_name='GBDT') acc = accuracy_score(test_y, y_predict3) # 准确率 prec = precision_score(test_y, y_predict3) # 精确率 recall = recall_score(test_y, y_predict3) # 召回率 f1 = f1_score(test_y, y_predict3) # F1 fpr, tpr, thersholds = roc_curve(test_y, y_predict3) roc_auc = auc(fpr, tpr) data1 = acc data2 = prec data3 = recall data4 = f1 data5 = roc_auc # 将数据添加到表格中 table.add_row([data1, data2, data3, data4, data5]) print(table) import pandas as pd # 将数据转换为DataFrame格式 df = pd.DataFrame(list(table), columns=["acc","prec","recall","f1","roc_auc"]) # 将DataFrame写入Excel文件 writer = pd.ExcelWriter('output.xlsx') df.to_excel(writer, index=False) writer.save(),出现上面的错误怎样更正

for each class class_names = np.unique(y_train) y_scores = tree.predict_proba(X_test) y_pred = tree.predict(X_test) macro_auc = roc_auc_score(y_test, y_scores, multi_class='ovo', average='macro') y_test = label_binarize(y_test, classes=range(3)) y_pred = label_binarize(y_pred, classes=range(3)) micro_auc = roc_auc_score(y_test, y_scores, average='micro') #micro_auc = roc_auc_score(y_test, y_scores, multi_class='ovr', average='micro') # calculate ROC curve fpr = dict() tpr = dict() roc_auc = dict() for i in range(3): # 遍历三个类别 fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_pred[:, i]) roc_auc[i] = auc(fpr[i], tpr[i]) return reports, matrices, micro_auc, macro_auc, fpr, tpr, roc_auc根据上述代码怎么调整下列代码fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), y_pred.ravel()) roc_auc["micro"] = auc(fpr["micro"], tpr["micro"]) # Compute macro-average ROC curve and ROC area(方法一) # First aggregate all false positive rates all_fpr = np.unique(np.concatenate([fpr_avg[i] for i in range(3)])) # Then interpolate all ROC curves at this points mean_tpr = np.zeros_like(all_fpr) for i in range(3): mean_tpr += interp(all_fpr, fpr_avg[i], tpr_avg[i]) # Finally average it and compute AUC mean_tpr /= 3 fpr_avg["macro"] = all_fpr tpr_avg["macro"] = mean_tpr macro_auc_avg["macro"] = macro_auc_avg # Plot all ROC curves lw = 2 plt.figure() plt.plot(fpr_avg["micro"], tpr_avg["micro"], label='micro-average ROC curve (area = {0:0.2f})' ''.format(micro_auc_avg["micro"]), color='deeppink', linestyle=':', linewidth=4) plt.plot(fpr_avg["macro"], tpr_avg["macro"], label='macro-average ROC curve (area = {0:0.2f})' ''.format(macro_auc_avg["macro"]), color='navy', linestyle=':', linewidth=4) colors = cycle(['aqua', 'darkorange', 'cornflowerblue']) for i, color in zip(range(3), colors): plt.plot(fpr_avg[i], tpr_avg[i], color=color, lw=lw, label='ROC curve of class {0} (area = {1:0.2f})' ''.format(i, roc_auc_avg[i])) plt.plot([0, 1], [0, 1], 'k--', lw=lw) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('DF') plt.legend(loc="lower right") plt.show()

最新推荐

recommend-type

Python图像处理之直线和曲线的拟合与绘制【curve_fit()应用】

主要介绍了Python图像处理之直线和曲线的拟合与绘制,结合实例形式分析了Python曲线拟合相关函数curve_fit()的使用技巧,需要的朋友可以参考下
recommend-type

节假日祝福话-html

web前端开发期末大作业
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MySQL数据库性能提升秘籍:揭秘性能下降幕后真凶及解决策略

![MySQL数据库性能提升秘籍:揭秘性能下降幕后真凶及解决策略](http://xiaoyuge.work/explain-sql/index/2.png) # 1. MySQL数据库性能优化概述** MySQL数据库性能优化是一项至关重要的任务,可以显著提高应用程序的响应时间和整体用户体验。优化涉及识别和解决影响数据库性能的因素,包括硬件资源瓶颈、软件配置不当和数据库设计缺陷。通过采取适当的优化策略,可以显著提升数据库性能,满足业务需求并提高用户满意度。 # 2. MySQL数据库性能下降的幕后真凶 ### 2.1 硬件资源瓶颈 #### 2.1.1 CPU利用率过高 **症状:
recommend-type

如何在unity创建按钮

在 Unity 中创建按钮的步骤如下: 1. 在 Unity 中创建一个 UI Canvas,选择 GameObject -> UI -> Canvas。 2. 在 Canvas 中创建一个按钮,选择 GameObject -> UI -> Button。 3. 在场景视图中调整按钮的位置和大小。 4. 在 Inspector 中设置按钮的文本、颜色、字体等属性。 5. 添加按钮的响应事件,选择按钮,在 Inspector 的 On Click () 中添加相应的方法。 这样就可以创建一个按钮了,你可以在游戏中使用它来触发相应的操作。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

表锁问题全解析,深度解读MySQL表锁问题及解决方案

![表锁问题全解析,深度解读MySQL表锁问题及解决方案](https://img-blog.csdnimg.cn/img_convert/a89711a10f6b856a777a9eed389c5112.png) # 1. 表锁基础** 表锁是一种数据库并发控制机制,用于防止多个事务同时访问和修改同一行或表中的数据,从而保证数据的完整性和一致性。表锁通过对表或表中的特定行施加锁来实现,以确保在事务完成之前,其他事务不能对这些数据进行修改。 表锁分为两种主要类型:共享锁(S锁)和排他锁(X锁)。共享锁允许多个事务同时读取同一行或表中的数据,但不能修改。排他锁则允许一个事务独占地访问和修改同
recommend-type

电脑上怎么获取文件路径

在 Windows 操作系统中,你可以按住 Shift 键并右键单击文件或文件夹,然后选择“复制为路径”选项,该选项会将文件或文件夹的路径复制到剪贴板中。你也可以直接打开文件或文件夹所在的目录,然后在地址栏中复制路径。在 Mac 操作系统中,你可以在 Finder 中选中文件或文件夹,然后从菜单栏中选择“文件”->“获取信息”,在弹出的窗口中可以找到文件或文件夹的路径。