根据文档中的粒子群双目标函数,以及文中的数据,怎么用python来实现该粒子群函数的优化算法,python代码怎么写,请详细写出
时间: 2024-12-19 11:26:16 浏览: 16
python: 粒子群算法优化单目标函数
5星 · 资源好评率100%
要使用Python实现基于粒子群优化(PSO)算法解决文档中提到的双目标优化问题,可以分为以下几个步骤:
### 1. 导入必要的库
首先,导入所需的Python库,如`numpy`用于数值计算,`pyswarm`用于粒子群优化。
```python
import numpy as np
from pyswarm import pso
```
### 2. 定义目标函数
根据文档中的描述,我们需要定义两个目标函数:总成本最小化和碳排放最小化。
#### 总成本最小化
总成本包括固定成本、可变成本、运输成本、碳税和政府补贴与惩罚。
```python
def total_cost(x):
# 解码决策变量
fixed_cost = sum([x[i] * G_y[i] for i in range(len(G_y))])
variable_cost = sum([x[i] * D_y * Q_y[i] for i in range(len(Q_y))])
transport_cost = sum([x[i] * alpha * A_xy[i] * N_xy[i] for i in range(len(N_xy))])
carbon_tax = sum([x[i] * Q * beta * A_xy[i] * N_xy[i] for i in range(len(N_xy))])
# 计算政府补贴与惩罚
penalty = 0
for i in range(len(y)):
if y[i] < E_1:
penalty += b_1 * (E_1 - y[i])
elif y[i] > E_2:
penalty += b_2 * (y[i] - E_2)
return fixed_cost + variable_cost + transport_cost + carbon_tax - penalty
```
#### 碳排放最小化
碳排放包括运输过程中的碳排放和各节点运作过程中的碳排放。
```python
def total_carbon_emission(x):
# 运输过程中的碳排放
transport_emission = sum([x[i] * beta * A_xy[i] * N_xy[i] for i in range(len(N_xy))])
# 各节点运作过程中的碳排放
node_emission = sum([x[i] * ITP[i] for i in range(len(ITP))])
return transport_emission + node_emission
```
### 3. 定义约束条件
根据文档中的约束条件,定义相应的边界和约束函数。
```python
def constraints(x):
# 回收分类中心的数量限制
num_recycling_centers = sum(x[:len(G_y)])
if not (c_1 <= num_recycling_centers <= c_2):
return False
# 再制造中心的数量限制
num_remanufacturing_centers = sum(x[len(G_y):len(G_y) + len(G_z)])
if not (c_3 <= num_remanufacturing_centers <= c_4):
return False
# 其他约束条件可以根据具体需求添加
return True
```
### 4. 设置初始参数
根据文档中的数据,设置初始参数。
```python
# 示例数据,实际应用中需要根据文档中的数据填充
G_y = [150000, 160000, 155000, 160000, 156000, 170000, 165000, 175000, 180000, 160000]
D_y = 65
Q_y = [0.87, 0.88, 0.85, 0.84, 0.88, 0.82, 0.83, 0.84, 0.82, 0.86]
alpha = 5.5
beta = 0.35
E_1 = 0.75
E_2 = 0.85
b_1 = -10
b_2 = 10
c_1 = 7
c_2 = 10
c_3 = 5
c_4 = 7
Q = 30
ITP = [100, 110, 120, 130, 140, 150, 160, 170, 180, 190]
A_xy = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
N_xy = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
# 初始解的范围
lb = [0] * (len(G_y) + len(G_z))
ub = [1] * (len(G_y) + len(G_z))
# 目标函数列表
obj_func = lambda x: (total_cost(x), total_carbon_emission(x))
```
### 5. 使用PSO进行优化
调用`pso`函数进行多目标优化。
```python
# 进行多目标优化
optimal_solution, optimal_values = pso(obj_func, lb, ub, f_ieqcons=constraints)
print("Optimal Solution:", optimal_solution)
print("Optimal Values (Total Cost, Total Carbon Emission):", optimal_values)
```
### 6. 结果解释
输出最优解及其对应的目标函数值。
```python
print("Optimal Solution:", optimal_solution)
print("Optimal Total Cost:", optimal_values[0])
print("Optimal Total Carbon Emission:", optimal_values[1])
```
### 完整代码
将上述所有部分组合在一起,形成完整的代码:
```python
import numpy as np
from pyswarm import pso
# 定义目标函数
def total_cost(x):
fixed_cost = sum([x[i] * G_y[i] for i in range(len(G_y))])
variable_cost = sum([x[i] * D_y * Q_y[i] for i in range(len(Q_y))])
transport_cost = sum([x[i] * alpha * A_xy[i] * N_xy[i] for i in range(len(N_xy))])
carbon_tax = sum([x[i] * Q * beta * A_xy[i] * N_xy[i] for i in range(len(N_xy))])
penalty = 0
for i in range(len(y)):
if y[i] < E_1:
penalty += b_1 * (E_1 - y[i])
elif y[i] > E_2:
penalty += b_2 * (y[i] - E_2)
return fixed_cost + variable_cost + transport_cost + carbon_tax - penalty
def total_carbon_emission(x):
transport_emission = sum([x[i] * beta * A_xy[i] * N_xy[i] for i in range(len(N_xy))])
node_emission = sum([x[i] * ITP[i] for i in range(len(ITP))])
return transport_emission + node_emission
# 定义约束条件
def constraints(x):
num_recycling_centers = sum(x[:len(G_y)])
if not (c_1 <= num_recycling_centers <= c_2):
return False
num_remanufacturing_centers = sum(x[len(G_y):len(G_y) + len(G_z)])
if not (c_3 <= num_remanufacturing_centers <= c_4):
return False
return True
# 设置初始参数
G_y = [150000, 160000, 155000, 160000, 156000, 170000, 165000, 175000, 180000, 160000]
D_y = 65
Q_y = [0.87, 0.88, 0.85, 0.84, 0.88, 0.82, 0.83, 0.84, 0.82, 0.86]
alpha = 5.5
beta = 0.35
E_1 = 0.75
E_2 = 0.85
b_1 = -10
b_2 = 10
c_1 = 7
c_2 = 10
c_3 = 5
c_4 = 7
Q = 30
ITP = [100, 110, 120, 130, 140, 150, 160, 170, 180, 190]
A_xy = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
N_xy = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
lb = [0] * (len(G_y) + len(G_z))
ub = [1] * (len(G_y) + len(G_z))
obj_func = lambda x: (total_cost(x), total_carbon_emission(x))
# 进行多目标优化
optimal_solution, optimal_values = pso(obj_func, lb, ub, f_ieqcons=constraints)
print("Optimal Solution:", optimal_solution)
print("Optimal Total Cost:", optimal_values[0])
print("Optimal Total Carbon Emission:", optimal_values[1])
```
以上代码实现了基于粒子群优化(PSO)的双目标优化算法,用于最小化总成本和碳排放。你可以根据实际情况调整参数和数据。
阅读全文