def change_model(self, x): self.model_type = self.comboBox.currentText() self.det_thread.weights = "./pt/%s" % self.model_type
时间: 2024-04-28 19:25:43 浏览: 93
这段代码是在 PyQt5 中实现了一个名为 change_model 的方法,该方法会在用户选择了一个新的模型文件时被调用。具体来说,该方法会获取 comboBox 中当前选中的文本(即用户选择的新模型文件),然后将其保存在 self.model_type 变量中。接下来,它会将 self.model_type 变量的值拼接成一个字符串,形如 "./pt/模型文件名",然后将其赋值给名为 weights 的变量。这个变量很可能是程序中的一个线程(det_thread)的属性,它用来保存当前正在使用的模型文件路径。通过这个方法,程序可以在用户选择不同的模型文件时,实时更新使用的模型文件路径,从而实现动态切换模型的功能。
相关问题
self.det_thread = DetThread() self.model_type = self.comboBox.currentText() self.det_thread.weights = "./pt/%s" % self.model_type self.det_thread.source = '0' self.det_thread.percent_length = self.progressBar.maximum() self.det_thread.send_raw.connect(lambda x: self.show_image(x, self.raw_video)) self.det_thread.send_img.connect(lambda x: self.show_image(x, self.out_video)) self.det_thread.send_statistic.connect(self.show_statistic) self.det_thread.send_msg.connect(lambda x: self.show_msg(x)) self.det_thread.send_percent.connect(lambda x: self.progressBar.setValue(x))
根据你给出的代码,这是一个使用 PyQt5 库编写的 GUI 程序,其中包含一个名为 DetThread 的线程类。在这段代码中,首先创建了一个 DetThread 的实例,然后获取了下拉框中选择的模型类型,设置了权重文件的路径和视频源,设置了进度条的最大值,以及连接了一些信号和槽函数。具体来说,当 DetThread 线程发送原始视频帧、处理后的视频帧、统计数据、消息和进度百分比时,分别会触发 show_image、show_statistic、show_msg 和 progressBar.setValue 等槽函数,从而在 GUI 界面上显示出来。
# yolov5 thread self.det_thread = DetThread() self.model_type = self.comboBox.currentText() self.det_thread.weights = "./pt/%s" % self.model_type self.det_thread.source = '0' self.det_thread.percent_length = self.progressBar.maximum() self.det_thread.send_raw.connect(lambda x: self.show_image(x, self.raw_video)) self.det_thread.send_img.connect(lambda x: self.show_image(x, self.out_video)) self.det_thread.send_statistic.connect(self.show_statistic) self.det_thread.send_msg.connect(lambda x: self.show_msg(x)) self.det_thread.send_percent.connect(lambda x: self.progressBar.setValue(x))
这段代码是在 PyQt5 中创建了一个名为 det_thread 的线程,并设置了该线程的参数。具体来说,该线程用于运行 YOLOv5 模型,它的参数包括:
- weights:当前使用的模型文件路径,从 comboBox 组件中获取;
- source:输入源,这里设置为 '0',表示使用摄像头作为输入源;
- percent_length:进度条的最大值,用于计算当前识别进度的百分比;
- send_raw:将原始视频帧图像传递给 show_image() 方法进行显示;
- send_img:将经过模型识别后的图像传递给 show_image() 方法进行显示;
- send_statistic:将模型识别结果的统计数据传递给 show_statistic() 方法进行显示;
- send_msg:将程序运行过程中的提示信息传递给 show_msg() 方法进行显示;
- send_percent:将当前识别进度的百分比传递给 progressBar 组件进行显示。
通过创建这个线程,并设置它的参数,程序可以在运行时使用 YOLOv5 模型进行目标检测,实现视频流的实时识别。
阅读全文