x=read.table("D:\\大二下\\多元统计分析\\shuju\\距离判别.txt",header = T) x class=factor(x[,1])#转化为因子型 x=x[,-1] g=length(levels(class))#类别数 L=ncol(x)#指标数 nx=nrow(x)#样品数 mu=matrix(0,nrow=g,ncol=L)#均值 s=list()#协方差 for (i in 1:g) { mu[i,]=colMeans(x[class==i,]) s[[i]]=cov(x[class==i,]) } shf=matrix(0,nrow=L,ncol=L) for (i in 1:length(s)) { n=length(class[class==i]) shf=shf+(n-1)*s[[i]] } sh=shf/(nx-g) D=matrix(0,nrow = nx,ncol=g)#马氏平方距离 for (i in 1:g) { for (j in 1:nx) { #D[j,i]=as.matrix(x[j,]-mu[i,])%*%solve(sh)%*%t(x[j,]-mu[i,]) D[j,i]=mahalanobis(as.matrix(x[j,]),mu[i,],sh) } } D x=c(8.06,231.03,14.41,5.72,6.15) x1=c(9.89,409.42,19.47,5.19,10.49) matrix(x,ncol=L) mahalanobis(matrix(x1,ncol=L),mu[1,],sh) #回代估计法 lei=c() for (i in 1:nx) { lei[i]=which.min(D[i,]) } lei for (i in 1:nx) { n[i]=ifelse(class[i]==lei[i],0,1) } p=sum(n)/nx#回代误判率 #交叉确认估计法 y=read.table("D:\\大二下\\多元统计分析\\shuju\\距离判别.txt",header = T) L=ncol(y[,-1])#指标数 nx=nrow(y)#样品数 lei=c() nn=c() for (k in 1:nx) { x=y[-k,] class=factor(x[,1]) g=length(levels(class))#类别数 x=x[,-1] nnx=nx-1 mu=matrix(0,nrow=g,ncol=L)#均值 s=list()#协方差 for (i in 1:g) { mu[i,]=colMeans(x[class==i,]) s[[i]]=cov(x[class==i,]) } shf=matrix(0,nrow=L,ncol=L) for (j in 1:length(s)) { n=length(class[class==j]) shf=shf+(n-1)*s[[j]] } sh=shf/(nnx-g) D=c()#剔除样品的马氏平方距离 for (m in 1:g) { #D[m]=as.matrix(y[k,-1]-mu[m,])%*%solve(sh)%*%t(y[k,-1]-mu[m,]) D[m]=mahalanobis(as.matrix(y[k,-1]),mu[m,],sh) } lei[k]=which.min(D)#剔除样本判断的所属类别 nn[k]=ifelse(y[k,1]==lei[k],0,1)#误判时n为1 } x[which(class!=lei)] p=sum(nn)/nx#交叉确认误判率 nn lei利用此代码实现多个总体的bayes判别(假定各个总体的协方差相等)
时间: 2024-02-29 21:57:07 浏览: 50
MATLAB学习笔记 - 读取txt、mat、Excel等文件.docx
这段代码是用 R 语言实现的多元统计分析中的距离判别方法,包括回代估计法和交叉确认估计法。其中使用了马氏平方距离来衡量样本点与各个类别均值之间的距离,进而判断其所属类别。回代估计法是指先用所有样本数据计算出各个类别的均值和协方差矩阵,再将一部分样本数据剔除后用剩余的样本数据再次计算均值和协方差矩阵,最终通过马氏平方距离来判断样本所属类别。交叉确认估计法则是将每个样本依次剔除,用剩余样本重新计算均值和协方差矩阵,再用剔除的样本来验证分类准确性,最终计算误判率。如果假定各个总体的协方差相等,可以使用贝叶斯判别法来进行分类。
阅读全文