粒子群算法优化bp神经网络预测番茄产量python代码案例
时间: 2023-07-05 12:23:49 浏览: 107
以下是使用粒子群算法(PSO)优化BP神经网络进行番茄产量预测的Python代码案例:
```python
import numpy as np
import pandas as pd
from sklearn.neural_network import MLPRegressor
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
from pyswarm import pso
# 读取数据
data = pd.read_csv('tomato.csv')
# 将数据集分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(data.iloc[:, :-1], data.iloc[:, -1], test_size=0.3, random_state=42)
# 定义BP神经网络模型
def nn_model(X_train, y_train, X_test, y_test, params):
hidden_layer_sizes = (params[0], params[1])
activation = 'relu'
solver = 'adam'
alpha = params[2]
max_iter = 1000
tol = 1e-4
model = MLPRegressor(hidden_layer_sizes=hidden_layer_sizes, activation=activation, solver=solver, alpha=alpha, max_iter=max_iter, tol=tol)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
return mse
# 定义PSO优化函数
def pso_optimization(X_train, y_train, X_test, y_test):
def objective_function(params):
return nn_model(X_train, y_train, X_test, y_test, params)
# 定义搜索空间
lb = [2, 2, 0.0001]
ub = [10, 10, 0.1]
# 运行PSO算法
xopt, fopt = pso(objective_function, lb, ub, swarmsize=100, maxiter=100, minstep=1e-8)
return xopt, fopt
# 运行PSO算法进行BP神经网络参数优化
best_params, best_mse = pso_optimization(X_train, y_train, X_test, y_test)
# 使用最优参数构建BP神经网络模型
best_hidden_layer_sizes = (int(best_params[0]), int(best_params[1]))
best_alpha = best_params[2]
best_model = MLPRegressor(hidden_layer_sizes=best_hidden_layer_sizes, alpha=best_alpha)
# 在全量数据上进行训练
best_model.fit(data.iloc[:, :-1], data.iloc[:, -1])
# 预测番茄产量
new_data = np.array([[20, 25, 30]])
prediction = best_model.predict(new_data)
print('预测结果:', prediction[0])
```
在上面的代码中,我们首先使用`pandas`库读取了一个名为`tomato.csv`的数据集,该数据集包含了番茄产量的多个特征变量和目标变量。然后,我们将数据集分为训练集和测试集。接着,我们定义了一个BP神经网络模型,并使用均方误差(MSE)作为模型评估指标。最后,我们使用`pyswarm`库中的`pso`函数运行PSO算法,以搜索最优的BP神经网络参数。最终,我们使用最优参数在全量数据上进行训练,并使用训练好的模型进行番茄产量的预测。
阅读全文