在pytorch神经网络中,写一份代码,使用checkpoint实现参数保存
时间: 2023-03-29 13:02:32 浏览: 141
好的,我可以回答这个问题。以下是使用checkpoint实现参数保存的代码示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as data
from torchvision import datasets, transforms
# 定义神经网络模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = nn.functional.relu(nn.functional.max_pool2d(self.conv1(x), 2))
x = nn.functional.relu(nn.functional.max_pool2d(self.conv2(x), 2))
x = x.view(-1, 320)
x = nn.functional.relu(self.fc1(x))
x = self.fc2(x)
return nn.functional.log_softmax(x, dim=1)
# 定义训练函数
def train(model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = nn.functional.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % 100 == :
print('Train Epoch: {} [{}/{} ({:.f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
# 定义测试函数
def test(model, device, test_loader):
model.eval()
test_loss =
correct =
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += nn.functional.nll_loss(output, target, reduction='sum').item()
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
# 定义训练参数
batch_size = 64
test_batch_size = 100
epochs = 10
lr = .01
momentum = .5
seed = 1
log_interval = 100
# 设置随机种子
torch.manual_seed(seed)
# 判断是否有可用的GPU
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
# 加载数据集
train_loader = data.DataLoader(
datasets.MNIST('../data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((.1307,), (.3081,))
])),
batch_size=batch_size, shuffle=True)
test_loader = data.DataLoader(
datasets.MNIST('../data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((.1307,), (.3081,))
])),
batch_size=test_batch_size, shuffle=True)
# 初始化模型和优化器
model = Net().to(device)
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentum)
# 训练和测试模型
for epoch in range(1, epochs + 1):
train(model, device, train_loader, optimizer, epoch)
test(model, device, test_loader)
# 保存模型参数
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': loss,
}, 'checkpoint.pth')
```
这段代码实现了一个简单的卷积神经网络,使用MNIST数据集进行训练,并在每个epoch结束时保存模型参数到checkpoint.pth文件中。在下一次训练时,可以使用torch.load()函数加载checkpoint文件中的参数,继续训练模型。
阅读全文