RBF-BP代码
时间: 2023-07-03 18:13:40 浏览: 91
RBF神经网络详细代码
5星 · 资源好评率100%
以下是一个简单的Python实现RBF-BP神经网络的代码,包括网络的训练和预测:
```python
import numpy as np
# 定义径向基函数(RBF)
def rbf(x, c, s):
return np.exp(-1 / (2 * s**2) * (x-c)**2)
# 定义RBF-BP神经网络类
class RBF_BP_Net(object):
def __init__(self, input_shape, hidden_shape, output_shape, learning_rate=0.1, sigma=1.0):
self.input_shape = input_shape
self.hidden_shape = hidden_shape
self.output_shape = output_shape
self.learning_rate = learning_rate
self.sigma = sigma
self.centers = None
self.weights = None
self.bias = None
# 训练RBF-BP神经网络
def train(self, X, y, epochs=1000):
# 初始化隐层神经元中心
self.centers = X[np.random.choice(X.shape[0], self.hidden_shape, replace=False)]
# 计算径向基函数矩阵
G = np.zeros((X.shape[0], self.hidden_shape))
for i in range(X.shape[0]):
for j in range(self.hidden_shape):
G[i, j] = rbf(X[i], self.centers[j], self.sigma)
# 初始化输出层权值和偏置
self.weights = np.random.randn(self.hidden_shape, self.output_shape)
self.bias = np.random.randn(self.output_shape)
# 训练神经网络
for epoch in range(epochs):
# 前向传播
hidden_output = G.dot(self.weights) + self.bias
y_pred = self.sigmoid(hidden_output)
# 计算误差和梯度
error = y - y_pred
grad = error * self.sigmoid_derivative(y_pred)
# 反向传播
delta_weights = G.T.dot(grad)
delta_bias = np.sum(grad, axis=0)
# 更新权重和偏置
self.weights += self.learning_rate * delta_weights
self.bias += self.learning_rate * delta_bias
# 预测输出值
def predict(self, X):
G = np.zeros((X.shape[0], self.hidden_shape))
for i in range(X.shape[0]):
for j in range(self.hidden_shape):
G[i, j] = rbf(X[i], self.centers[j], self.sigma)
hidden_output = G.dot(self.weights) + self.bias
y_pred = self.sigmoid(hidden_output)
return y_pred
# 定义sigmoid函数及其导数
def sigmoid(self, x):
return 1 / (1 + np.exp(-x))
def sigmoid_derivative(self, x):
return x * (1 - x)
```
这段代码定义了一个RBF_BP_Net类,包括了RBF-BP神经网络的训练和预测方法。其中,输入参数包括:
- input_shape:输入层的维度;
- hidden_shape:隐层神经元的数量;
- output_shape:输出层的维度;
- learning_rate:学习率,用于更新权重;
- sigma:径向基函数的宽度。
通过调用train()方法,可以使用输入数据X和对应的标签y对RBF-BP神经网络进行训练;通过调用predict()方法,可以对新的输入数据进行预测并输出预测结果。
阅读全文