设计与实现一个数据分析应用系统 ,并给出总的代码,具有以下功能:数据爬取功能、数据预处理、数据统计功能、可视化分析功能、分类或预测功能,主要对以下内容进行有关于2024年新华社发表的新闻标题、评论数、点赞数、转发数
时间: 2024-10-24 10:19:18 浏览: 26
Python获取lunwen信息,包含数据爬取、数据分析、数据可视化代码
5星 · 资源好评率100%
设计一个数据分析应用系统,主要包括以下几个步骤:
1. **数据爬取**:
使用Python的`requests`库获取新华社的新闻数据,如`BeautifulSoup`用于解析HTML内容:
```python
import requests
from bs4 import BeautifulSoup
def fetch_news(url):
response = requests.get(url)
soup = BeautifulSoup(response.text, 'html.parser')
# 提取新闻标题,评论数,点赞数和转发数的HTML标签
titles = soup.find_all('h2', class_='news-title') # 假设新闻标题在这个class里
comments = soup.find_all('div', class_='comments-count')
likes = soup.find_all('span', class_='like-count')
shares = soup.find_all('a', class_='share-link')
data = []
for title, comment, like, share in zip(titles, comments, likes, shares):
data.append({
'title': title.text,
'comments': int(comment.text),
'likes': int(like.text),
'shares': int(share['href'].split('/')[-1])
})
return data
```
2. **数据预处理**:
清理提取的数据,如去除无用字符,统一单位等:
```python
def preprocess_data(data):
cleaned_data = [{'title': clean_string(title), 'counts': (comment, like, share)}
for title, comment, like, share in data]
return cleaned_data
```
3. **数据统计**:
对预处理后的数据计算总体趋势和分布:
```python
def data_stats(cleaned_data):
total_comments, total_likes, total_shares = sum([d['counts'][0] for d in cleaned_data]), \
sum([d['counts'][1] for d in cleaned_data]), \
sum([d['counts'][2] for d in cleaned_data])
avg_counts = [total / len(cleaned_data) for total in [total_comments, total_likes, total_shares]]
return avg_counts, [max(counts) for counts in zip(*cleaned_data)]
```
4. **可视化分析**:
使用`matplotlib`或`seaborn`库创建图表展示数据:
```python
import matplotlib.pyplot as plt
def visualize_analysis(avg_counts, max_counts):
fig, axs = plt.subplots(nrows=2, ncols=2)
axs[0, 0].bar(['Comments', 'Likes', 'Shares'], avg_counts)
axs[0, 0].set_title('Average Counts')
axs[0, 1].plot(range(len(cleaned_data)), [d['counts'][0] for d in cleaned_data], 'r-o')
axs[0, 1].set_title('Comment Distribution')
axs[1, 0].hist(max_counts, bins='auto')
axs[1, 0].set_title('Max Counts Histogram')
plt.show()
```
5. **分类或预测功能**:
这部分取决于是否有可用的机器学习模型,例如文本情感分析或基于历史数据的新闻热度预测,这里暂不做展示。
完整的代码示例:
```python
# ... (以上所有函数组合)
if __name__ == '__main__':
url = "https://www.xinhuanet.com/news/" # 新华社首页URL
raw_data = fetch_news(url)
cleaned_data = preprocess_data(raw_data)
avg_counts, max_counts = data_stats(cleaned_data)
visualize_analysis(avg_counts, max_counts)
```
阅读全文