word_counts_top = word_counts_top.most_common(100) AttributeError: 'dict' object has no attribute 'most_common'怎么改正
时间: 2024-05-10 15:14:17 浏览: 170
`most_common()` 是 `collections.Counter` 类的方法,而你的 `word_counts_top` 是一个字典对象。所以你需要将其先转换成 `collections.Counter` 类型,再调用 `most_common()` 方法。可以按照以下方式修改代码:
```python
import collections
word_counts_top = collections.Counter(word_counts_top)
word_counts_top = word_counts_top.most_common(100)
```
这样就可以正常使用 `most_common()` 方法了。
相关问题
def predict_from_naive_bayes_model(model, matrix): """Use a Naive Bayes model to compute predictions for a target matrix. This function should be able to predict on the models that fit_naive_bayes_model outputs. Args: model: A trained model from fit_naive_bayes_model matrix: A numpy array containing word counts Returns: A numpy array containg the predictions from the model """ # *** START CODE HERE *** log_probabilities = [] for i in range(model.num_classes): log_probabilities.append(np.sum(matrix * model.log_class_priors[i] + model.log_likelihoods[i])) return np.argmax(log_probabilities) # Return the class with the highest probability # *** END CODE HERE ***代码报错AttributeError: 'dict' object has no attribute 'log_class_priors'请帮我修改
根据报错信息,我们可以看出,`model` 参数传入的是一个字典,而字典没有 `log_class_priors` 属性。因此,我们需要修改这个函数,使其能够处理字典作为输入。具体的修改方法如下:
```python
def predict_from_naive_bayes_model(model, matrix):
"""Use a Naive Bayes model to compute predictions for a target matrix. This function should be able to predict on the models that fit_naive_bayes_model outputs.
Args:
model: A trained model from fit_naive_bayes_model
matrix: A numpy array containing word counts
Returns:
A numpy array containing the predictions from the model
"""
# *** START CODE HERE ***
log_probabilities = []
for i in range(model['num_classes']):
log_probabilities.append(np.sum(matrix * model['log_class_priors'][i] + model['log_likelihoods'][i]))
return np.argmax(log_probabilities) # Return the class with the highest probability
# *** END CODE HERE ***
```
在这个修改后的函数中,我们使用了 `model['log_class_priors']` 和 `model['log_likelihoods']` 来获取训练得到的朴素贝叶斯模型的参数,这些参数存储在字典 `model` 中。同时,我们也使用了 `model['num_classes']` 来获取模型中的类别数目。
阅读全文