java代码怎么用二分法求一个递增数组某一元素所在的最大下标

时间: 2024-02-16 17:04:14 浏览: 85
好的,以下是Java代码,实现了利用二分法查找某一元素在递增数组中的最大下标: ```java public static int binarySearch(int[] nums, int target) { int left = 0; int right = nums.length - 1; int result = -1; while (left <= right) { int mid = (left + right) / 2; if (nums[mid] <= target) { result = mid; left = mid + 1; } else { right = mid - 1; } } return result; } ``` 其中,`nums` 是递增数组,`target` 是要查找的元素。这段代码的核心就是利用二分法思想,每次将区间的中间位置与目标元素进行比较,根据比较结果更新区间的左边界或右边界。当区间缩小至只剩下一个元素时,返回该元素在数组中的下标即可。 在这段代码中,我们通过维护一个变量 `result`,来记录目标元素在数组中出现的最大下标。当目标元素在数组中出现多次时,二分法会不断缩小区间,最终定位到最后一个出现的位置,因此 `result` 的值就是目标元素在数组中最大的下标。
相关问题

写一个用二分法查找一个降序数组的元素的C++程序

### 回答1: 下面是使用二分法查找降序数组元素的C程序: ```c #include <stdio.h> int binarySearch(int arr[], int low, int high, int key) { while (low <= high) { int mid = (low + high) / 2; if (arr[mid] == key) { return mid; } else if (arr[mid] < key) { high = mid - 1; } else { low = mid + 1; } } return -1; } int main() { int arr[] = {9, 8, 6, 5, 3, 2, 1}; int n = sizeof(arr) / sizeof(arr[0]); int key = 5; int result = binarySearch(arr, 0, n - 1, key); if (result == -1) { printf("元素 %d 不在数组中", key); } else { printf("元素 %d 在数组中的位置是 %d", key, result); } return 0; } ``` 该程序先定义了一个 `binarySearch` 函数,使用二分法查找数组中是否有指定的元素。函数接受四个参数:一个整型数组 `arr`,数组的起始下标 `low`,数组的结束下标 `high` 和要查找的元素 `key`。函数使用一个循环来不断缩小查找范围,最终返回元素在数组中的下标或 -1。 在 `main` 函数中,我们定义了一个降序数组 `arr`,并使用 `sizeof` 函数计算了数组的长度。然后我们指定要查找的元素 `key` 为 5,调用 `binarySearch` 函数进行查找,并根据返回值输出结果。 ### 回答2: 二分法是一种经典的查找算法,可以在有序数组中高效地查找目标元素。对于降序数组,我们可以稍作修改来适应它。 C程序的实现如下: ```c #include <stdio.h> // 定义一个降序数组 int arr[] = {100, 90, 80, 70, 60, 50, 40, 30, 20, 10}; // 二分查找函数 int binarySearch(int target, int left, int right) { while (left <= right) { int mid = left + (right - left) / 2; if (arr[mid] == target) { return mid; } if (arr[mid] > target) { left = mid + 1; } else { right = mid - 1; } } return -1; } int main() { int target = 60; int size = sizeof(arr) / sizeof(arr[0]); int result = binarySearch(target, 0, size - 1); if (result != -1) { printf("找到目标元素 %d 在索引位置 %d。\n", target, result); } else { printf("未找到目标元素 %d。\n", target); } return 0; } ``` 上述代码中,我们首先定义了一个降序数组 `arr[]`。接着,我们实现了一个 `binarySearch()` 函数来进行二分查找。该函数接收三个参数:目标元素 `target`、数组的左边界 `left` 和数组的右边界 `right`。 在 `binarySearch()` 函数中,我们使用 `while` 循环来进行二分查找。我们首先计算出中间元素的索引 `mid`,然后将目标元素与中间元素进行比较。如果相等,则返回中间元素的索引。如果目标元素比中间元素小,说明目标元素在右半部分,更新左边界 `left`。反之,更新右边界 `right`。直到左边界大于右边界,表示未找到目标元素,返回 -1。 在主函数中,我们定义了要查找的目标元素 `target`,然后计算出数组的长度 `size`。我们调用 `binarySearch()` 函数,并将目标元素、左边界为 0,右边界为 `size - 1` 传入。最后,根据返回的结果,输出相应的提示信息。 ### 回答3: 下面是用二分法查找一个降序数组的元素的C程序: ```c #include <stdio.h> int binarySearch(int arr[], int target, int left, int right) { while (left <= right) { int mid = left + (right - left) / 2; if (arr[mid] == target) { return mid; } else if (arr[mid] > target) { left = mid + 1; } else { right = mid - 1; } } return -1; } int main() { int arr[] = {10, 8, 6, 4, 2, 0}; int target = 6; int size = sizeof(arr) / sizeof(arr[0]); int result = binarySearch(arr, target, 0, size - 1); if (result == -1) { printf("元素 %d 不存在\n", target); } else { printf("元素 %d 在索引位置 %d\n", target, result); } return 0; } ``` 上述代码中,我们定义了一个`binarySearch`函数。在这个函数中,我们用`left`和`right`变量表示当前查找的范围的左右边界。在每次迭代中,我们找到中间位置 `mid`,然后将目标值与中间值进行比较。如果中间值等于目标值,则返回中间位置。如果中间值大于目标值,则缩小查找范围到右半部分(即`left`更新为`mid+1`),如果中间值小于目标值,则缩小查找范围到左半部分(即`right`更新为`mid-1`)。如果循环结束后没有找到目标值,则返回-1。 在主函数中,我们声明了一个降序排列的数组`arr`和要查找的目标值`target`。通过将数组的大小除以数组元素的大小,我们可以得到数组的长度。然后,我们调用`binarySearch`函数来查找目标值在数组中的索引位置。如果返回值为-1,则说明目标值不在数组中,否则,返回值就是目标值的索引位置。最后,我们根据返回值打印相应的结果。

Java 一个元素插入一个有序数组,二分法

可以使用二分法来将一个元素插入一个有序数组: 1. 定义一个变量 `start` 和一个变量 `end` 分别表示数组的起始和结束位置。 2. 计算数组中间位置的索引 `mid`,并将中间位置的元素与要插入的元素进行比较。 3. 如果要插入的元素小于中间位置的元素,则说明要插入的元素应该在左半部分,将 `end` 更新为 `mid - 1`。 4. 如果要插入的元素大于中间位置的元素,则说明要插入的元素应该在右半部分,将 `start` 更新为 `mid + 1`。 5. 如果要插入的元素等于中间位置的元素,则将要插入的元素插入到中间位置,并将数组后面的元素往后移一位。 6. 重复步骤 2 - 5 直到找到要插入的位置。 下面是一个示例代码: ``` public static void insert(int[] arr, int num) { int start = 0, end = arr.length - 1; int mid = 0; while (start <= end) { mid = (start + end) / 2; if (arr[mid] == num) { // 如果要插入的元素已经在数组中存在,则将要插入的元素插入到中间位置,并将数组后面的元素往后移一位 for (int i = arr.length - 1; i > mid; i--) { arr[i] = arr[i - 1]; } arr[mid] = num; return; } else if (arr[mid] > num) { end = mid - 1; } else { start = mid + 1; } } // 如果要插入的元素不在数组中,则将要插入的元素插入到对应位置,并将数组后面的元素往后移一位 for (int i = arr.length - 1; i > end; i--) { arr[i] = arr[i - 1]; } arr[end + 1] = num; } ```
阅读全文

相关推荐

最新推荐

recommend-type

数值分析实验报告之二分法求根 java

在Java中实现二分法求根,可以创建一个函数,接收初始区间、误差阈值作为参数,返回近似根。通常,会用循环结构来执行上述步骤,每次迭代检查中点函数值并更新区间。在实验中,还包含了用户界面交互,允许用户输入...
recommend-type

lamp-cloud 基于jdk21、jdk17、jdk8 + SpringCloud + SpringBoot 开发的微服务中后台快速开发平台,专注于多租户(SaaS架构)解决方案

lamp-cloud 基于jdk21、jdk17、jdk8 + SpringCloud + SpringBoot 开发的微服务中后台快速开发平台,专注于多租户(SaaS架构)解决方案,亦可作为普通项目(非SaaS架构)的基础开发框架使用,目前已实现插拔式数据库隔离、SCHEMA隔离、字段隔离 等租户隔离方案。
recommend-type

正整数数组验证库:确保值符合正整数规则

资源摘要信息:"validate.io-positive-integer-array是一个JavaScript库,用于验证一个值是否为正整数数组。该库可以通过npm包管理器进行安装,并且提供了在浏览器中使用的方案。" 该知识点主要涉及到以下几个方面: 1. JavaScript库的使用:validate.io-positive-integer-array是一个专门用于验证数据的JavaScript库,这是JavaScript编程中常见的应用场景。在JavaScript中,库是一个封装好的功能集合,可以很方便地在项目中使用。通过使用这些库,开发者可以节省大量的时间,不必从头开始编写相同的代码。 2. npm包管理器:npm是Node.js的包管理器,用于安装和管理项目依赖。validate.io-positive-integer-array可以通过npm命令"npm install validate.io-positive-integer-array"进行安装,非常方便快捷。这是现代JavaScript开发的重要工具,可以帮助开发者管理和维护项目中的依赖。 3. 浏览器端的使用:validate.io-positive-integer-array提供了在浏览器端使用的方案,这意味着开发者可以在前端项目中直接使用这个库。这使得在浏览器端进行数据验证变得更加方便。 4. 验证正整数数组:validate.io-positive-integer-array的主要功能是验证一个值是否为正整数数组。这是一个在数据处理中常见的需求,特别是在表单验证和数据清洗过程中。通过这个库,开发者可以轻松地进行这类验证,提高数据处理的效率和准确性。 5. 使用方法:validate.io-positive-integer-array提供了简单的使用方法。开发者只需要引入库,然后调用isValid函数并传入需要验证的值即可。返回的结果是一个布尔值,表示输入的值是否为正整数数组。这种简单的API设计使得库的使用变得非常容易上手。 6. 特殊情况处理:validate.io-positive-integer-array还考虑了特殊情况的处理,例如空数组。对于空数组,库会返回false,这帮助开发者避免在数据处理过程中出现错误。 总结来说,validate.io-positive-integer-array是一个功能实用、使用方便的JavaScript库,可以大大简化在JavaScript项目中进行正整数数组验证的工作。通过学习和使用这个库,开发者可以更加高效和准确地处理数据验证问题。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练

![【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练](https://img-blog.csdnimg.cn/20210619170251934.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNjc4MDA1,size_16,color_FFFFFF,t_70) # 1. 损失函数与随机梯度下降基础 在机器学习中,损失函数和随机梯度下降(SGD)是核心概念,它们共同决定着模型的训练过程和效果。本
recommend-type

在ADS软件中,如何选择并优化低噪声放大器的直流工作点以实现最佳性能?

在使用ADS软件进行低噪声放大器设计时,选择和优化直流工作点是至关重要的步骤,它直接关系到放大器的稳定性和性能指标。为了帮助你更有效地进行这一过程,推荐参考《ADS软件设计低噪声放大器:直流工作点选择与仿真技巧》,这将为你提供实用的设计技巧和优化方法。 参考资源链接:[ADS软件设计低噪声放大器:直流工作点选择与仿真技巧](https://wenku.csdn.net/doc/9867xzg0gw?spm=1055.2569.3001.10343) 直流工作点的选择应基于晶体管的直流特性,如I-V曲线,确保工作点处于晶体管的最佳线性区域内。在ADS中,你首先需要建立一个包含晶体管和偏置网络
recommend-type

系统移植工具集:镜像、工具链及其他必备软件包

资源摘要信息:"系统移植文件包通常包含了操作系统的核心映像、编译和开发所需的工具链以及其他辅助工具,这些组件共同作用,使得开发者能够在新的硬件平台上部署和运行操作系统。" 系统移植文件包是软件开发和嵌入式系统设计中的一个重要概念。在进行系统移植时,开发者需要将操作系统从一个硬件平台转移到另一个硬件平台。这个过程不仅需要操作系统的系统镜像,还需要一系列工具来辅助整个移植过程。下面将详细说明标题和描述中提到的知识点。 **系统镜像** 系统镜像是操作系统的核心部分,它包含了操作系统启动、运行所需的所有必要文件和配置。在系统移植的语境中,系统镜像通常是指操作系统安装在特定硬件平台上的完整副本。例如,Linux系统镜像通常包含了内核(kernel)、系统库、应用程序、配置文件等。当进行系统移植时,开发者需要获取到适合目标硬件平台的系统镜像。 **工具链** 工具链是系统移植中的关键部分,它包括了一系列用于编译、链接和构建代码的工具。通常,工具链包括编译器(如GCC)、链接器、库文件和调试器等。在移植过程中,开发者使用工具链将源代码编译成适合新硬件平台的机器代码。例如,如果原平台使用ARM架构,而目标平台使用x86架构,则需要重新编译源代码,生成可以在x86平台上运行的二进制文件。 **其他工具** 除了系统镜像和工具链,系统移植文件包还可能包括其他辅助工具。这些工具可能包括: - 启动加载程序(Bootloader):负责初始化硬件设备,加载操作系统。 - 驱动程序:使得操作系统能够识别和管理硬件资源,如硬盘、显卡、网络适配器等。 - 配置工具:用于配置操作系统在新硬件上的运行参数。 - 系统测试工具:用于检测和验证移植后的操作系统是否能够正常运行。 **文件包** 文件包通常是指所有这些组件打包在一起的集合。这些文件可能以压缩包的形式存在,方便下载、存储和传输。文件包的名称列表中可能包含如下内容: - 操作系统特定版本的镜像文件。 - 工具链相关的可执行程序、库文件和配置文件。 - 启动加载程序的二进制代码。 - 驱动程序包。 - 配置和部署脚本。 - 文档说明,包括移植指南、版本说明和API文档等。 在进行系统移植时,开发者首先需要下载对应的文件包,解压后按照文档中的指导进行操作。在整个过程中,开发者需要具备一定的硬件知识和软件开发经验,以确保操作系统能够在新的硬件上正确安装和运行。 总结来说,系统移植文件包是将操作系统和相关工具打包在一起,以便于开发者能够在新硬件平台上进行系统部署。了解和掌握这些组件的使用方法和作用是进行系统移植工作的重要基础。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【损失函数与批量梯度下降】:分析批量大小对损失函数影响,优化模型学习路径

![损失函数(Loss Function)](https://img-blog.csdnimg.cn/20190921134848621.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80Mzc3MjUzMw==,size_16,color_FFFFFF,t_70) # 1. 损失函数与批量梯度下降基础 在机器学习和深度学习领域,损失函数和批量梯度下降是核心概念,它们是模型训练过程中的基石。理解它们的基础概念对于构建
recommend-type

在设计高性能模拟电路时,如何根据应用需求选择合适的运算放大器,并评估供电对电路性能的影响?

在选择运算放大器以及考虑供电对模拟电路性能的影响时,您需要掌握一系列的关键参数和设计准则。这包括运算放大器的增益带宽积(GBWP)、输入偏置电流、输入偏置电压、输入失调电压、供电范围、共模抑制比(CMRR)、电源抑制比(PSRR)等。合理的选择运算放大器需考虑电路的输入和输出范围、负载大小、信号频率、温度系数、噪声水平等因素。而供电对性能的影响则体现在供电电压的稳定性、供电噪声、电源电流消耗、电源抑制比等方面。为了深入理解这些概念及其在设计中的应用,请参考《模拟电路设计:艺术、科学与个性》一书,该书由模拟电路设计领域的大师Jim Williams所著。您将通过书中的丰富案例学习如何针对不同应用