python编写对话机器人
时间: 2023-07-01 15:06:38 浏览: 119
要编写一个对话机器人,可以使用 Python 中的自然语言处理工具和机器学习库。以下是一个简单的示例:
1. 安装必要的库:
```
pip install nltk
pip install tensorflow
```
2. 导入所需的库:
```python
import nltk
from nltk.stem import WordNetLemmatizer
import numpy as np
import tensorflow as tf
import random
import json
```
3. 读取对话数据文件:
```python
with open('intents.json') as file:
data = json.load(file)
```
4. 处理对话数据:
```python
lemmatizer = WordNetLemmatizer()
words = []
labels = []
docs_x = []
docs_y = []
for intent in data['intents']:
for pattern in intent['patterns']:
# 分词并词形还原
tokenized_words = nltk.word_tokenize(pattern)
words.extend(tokenized_words)
docs_x.append([lemmatizer.lemmatize(word.lower()) for word in tokenized_words])
docs_y.append(intent['tag'])
if intent['tag'] not in labels:
labels.append(intent['tag'])
words = sorted(list(set(words)))
labels = sorted(labels)
```
5. 创建训练数据集:
```python
training = []
output = []
out_empty = [0] * len(labels)
for i, doc in enumerate(docs_x):
bag = []
for word in words:
bag.append(1) if word in doc else bag.append(0)
output_row = out_empty[:]
output_row[labels.index(docs_y[i])] = 1
training.append(bag)
output.append(output_row)
training = np.array(training)
output = np.array(output)
```
6. 创建神经网络模型:
```python
tf.reset_default_graph()
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation='softmax')
net = tflearn.regression(net)
model = tflearn.DNN(net)
```
7. 训练模型:
```python
model.fit(training, output, n_epoch=1000, batch_size=8, show_metric=True)
model.save('model.tflearn')
```
8. 使用模型进行对话:
```python
def bag_of_words(s, words):
bag = [0] * len(words)
s_words = nltk.word_tokenize(s)
s_words = [lemmatizer.lemmatize(word.lower()) for word in s_words]
for se in s_words:
for i, word in enumerate(words):
if word == se:
bag[i] = 1
return np.array(bag)
def chat():
print("开始对话!")
while True:
inp = input("你: ")
if inp.lower() == '退出':
break
results = model.predict([bag_of_words(inp, words)])
results_index = np.argmax(results)
tag = labels[results_index]
for tg in data['intents']:
if tg['tag'] == tag:
responses = tg['responses']
print(random.choice(responses))
chat()
```
以上是一个简单的对话机器人的示例,你可以根据需求进行更改和扩展。
阅读全文