设计算法求二叉树所包含的叶结点的数目

时间: 2024-03-01 09:45:56 浏览: 18
以下是求二叉树叶子结点数目的算法: 1. 如果二叉树为空,则输出“THIS IS A EMPTY BINARY TREE”。 2. 如果二叉树不为空,则进行递归遍历,统计叶子结点的个数。 3. 递归遍历时,如果当前结点为空,则返回0。 4. 如果当前结点为叶子结点,则返回1。 5. 如果当前结点有左右子树,则递归遍历左右子树,并将左右子树的叶子结点个数相加。 ```python def count_leaf_nodes(root): if root is None: print("THIS IS A EMPTY BINARY TREE") return 0 elif root.left is None and root.right is None: return 1 else: return count_leaf_nodes(root.left) + count_leaf_nodes(root.right) ```
相关问题

设计算法求二叉树所包含的叶结点的数目并求二叉树的深度。

以下是求解二叉树叶结点数目和深度的算法: ```python # 定义二叉树结点类 class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right # 求解二叉树叶结点数目和深度的函数 def count_leaf_and_depth(root): if not root: # 如果根节点为空,返回0 return 0, 0 if not root.left and not root.right: # 如果根节点为叶结点,返回1和1 return 1, 1 left_leaf, left_depth = count_leaf_and_depth(root.left) # 递归计算左子树的叶结点数目和深度 right_leaf, right_depth = count_leaf_and_depth(root.right) # 递归计算右子树的叶结点数目和深度 leaf = left_leaf + right_leaf # 计算当前树的叶结点数目 depth = max(left_depth, right_depth) + 1 # 计算当前树的深度 return leaf, depth ```

c语言实验: 二叉树基本操作 实验要求: 1.按先序序列构造一棵二叉链表表示的二叉树T; 2.对这棵二叉树进行递归遍历:先序、中序、后序以及层次遍历遍历序列,分别输出结点的遍历序列; 3. 对这棵树用非递归方式进行遍历:先序、中序以及后序遍历序列,分别输出结点的遍历序列; 4.求二叉树的深度/结点数目/叶结点数目; 5.将二叉树每个结点的左右子树交换位置; 6. 设计二叉树的双序遍历算法(双序遍历是指对于二叉树的每一个结点来说,先访问这个结点,再按双序遍历它的左子树,然后再一次访问这个结点,接下来按双序遍历它的右子树); 7. 计算二叉树最大宽度(二叉树的最大宽度是指二叉树所有层中结点个数的最大值); 8. 求二叉树中第一条最长的路径长度,并输出此路径上各结点。

好的,这是一个比较全面的二叉树实验,需要实现多种操作。下面我将分步介绍如何实现这些操作。 1. 按先序序列构造一棵二叉链表表示的二叉树T 先序遍历的顺序是:根节点,左子树,右子树。我们可以利用这个顺序来构造二叉树。具体实现如下: ```c typedef struct TreeNode { char data; // 结点数据 struct TreeNode *lchild; // 左子树 struct TreeNode *rchild; // 右子树 } TreeNode, *Tree; Tree createTree() { char ch; scanf("%c", &ch); if (ch == '#') { // 以 '#' 表示空结点 return NULL; } Tree node = (Tree)malloc(sizeof(TreeNode)); node->data = ch; node->lchild = createTree(); node->rchild = createTree(); return node; } ``` 在调用 createTree 函数时,输入一个字符串,其中 '#' 表示空结点。例如输入:`AB#CD##E##`,则构造出的二叉树如下: ``` A / \ B C / \ D E ``` 2. 对这棵二叉树进行递归遍历 递归遍历二叉树的方法有很多种,这里我们实现先序、中序、后序和层次遍历。 ```c // 先序遍历 void preOrder(Tree T) { if (T == NULL) { return; } printf("%c ", T->data); preOrder(T->lchild); preOrder(T->rchild); } // 中序遍历 void inOrder(Tree T) { if (T == NULL) { return; } inOrder(T->lchild); printf("%c ", T->data); inOrder(T->rchild); } // 后序遍历 void postOrder(Tree T) { if (T == NULL) { return; } postOrder(T->lchild); postOrder(T->rchild); printf("%c ", T->data); } // 层次遍历 void levelOrder(Tree T) { if (T == NULL) { return; } Queue q; initQueue(&q); enQueue(&q, T); while (!isQueueEmpty(q)) { Tree node = deQueue(&q); printf("%c ", node->data); if (node->lchild != NULL) { enQueue(&q, node->lchild); } if (node->rchild != NULL) { enQueue(&q, node->rchild); } } } ``` 其中,Queue 是一个队列结构体,可以用数组实现。initQueue 函数用来初始化队列,enQueue 函数用来入队,deQueue 函数用来出队,isQueueEmpty 函数用来判断队列是否为空。 3. 对这棵树用非递归方式进行遍历 除了递归遍历,我们还可以用非递归的方式来遍历二叉树。这里我们实现先序、中序和后序遍历。 ```c // 非递归先序遍历 void preOrderNonRecursive(Tree T) { Stack s; initStack(&s); push(&s, T); while (!isStackEmpty(s)) { Tree node = pop(&s); printf("%c ", node->data); if (node->rchild != NULL) { push(&s, node->rchild); } if (node->lchild != NULL) { push(&s, node->lchild); } } } // 非递归中序遍历 void inOrderNonRecursive(Tree T) { Stack s; initStack(&s); Tree p = T; while (p != NULL || !isStackEmpty(s)) { while (p != NULL) { push(&s, p); p = p->lchild; } if (!isStackEmpty(s)) { p = pop(&s); printf("%c ", p->data); p = p->rchild; } } } // 非递归后序遍历 void postOrderNonRecursive(Tree T) { Stack s; initStack(&s); Tree p = T, lastVisit = NULL; while (p != NULL || !isStackEmpty(s)) { while (p != NULL) { push(&s, p); p = p->lchild; } p = getTop(s); if (p->rchild == NULL || p->rchild == lastVisit) { printf("%c ", p->data); pop(&s); lastVisit = p; p = NULL; } else { p = p->rchild; } } } ``` 其中,Stack 是一个栈结构体,可以用数组实现。initStack 函数用来初始化栈,push 函数用来入栈,pop 函数用来出栈,getTop 函数用来获取栈顶元素,isStackEmpty 函数用来判断栈是否为空。 4. 求二叉树的深度/结点数目/叶结点数目 求二叉树的深度、结点数目和叶结点数目都可以用递归的方式实现。具体实现如下: ```c // 求二叉树深度 int getTreeDepth(Tree T) { if (T == NULL) { return 0; } int leftDepth = getTreeDepth(T->lchild); int rightDepth = getTreeDepth(T->rchild); return (leftDepth > rightDepth) ? (leftDepth + 1) : (rightDepth + 1); } // 求二叉树结点数目 int getNodeCount(Tree T) { if (T == NULL) { return 0; } return getNodeCount(T->lchild) + getNodeCount(T->rchild) + 1; } // 求二叉树叶结点数目 int getLeafCount(Tree T) { if (T == NULL) { return 0; } if (T->lchild == NULL && T->rchild == NULL) { return 1; } return getLeafCount(T->lchild) + getLeafCount(T->rchild); } ``` 5. 将二叉树每个结点的左右子树交换位置 交换二叉树每个结点的左右子树只需要递归交换左右子树即可。具体实现如下: ```c void swapTree(Tree T) { if (T == NULL) { return; } Tree tmp = T->lchild; T->lchild = T->rchild; T->rchild = tmp; swapTree(T->lchild); swapTree(T->rchild); } ``` 6. 设计二叉树的双序遍历算法 二叉树的双序遍历可以通过先序遍历和后序遍历来实现。具体实现如下: ```c void doubleOrder(Tree T) { if (T == NULL) { return; } printf("%c ", T->data); doubleOrder(T->lchild); printf("%c ", T->data); doubleOrder(T->rchild); } ``` 7. 计算二叉树最大宽度 计算二叉树最大宽度可以用层次遍历的方式实现。具体实现如下: ```c int getMaxWidth(Tree T) { if (T == NULL) { return 0; } Queue q; initQueue(&q); enQueue(&q, T); int maxWidth = 0; while (!isQueueEmpty(q)) { int size = q.size; maxWidth = (size > maxWidth) ? size : maxWidth; while (size--) { Tree node = deQueue(&q); if (node->lchild != NULL) { enQueue(&q, node->lchild); } if (node->rchild != NULL) { enQueue(&q, node->rchild); } } } return maxWidth; } ``` 8. 求二叉树中第一条最长的路径长度,并输出此路径上各结点 求二叉树中第一条最长的路径长度可以用递归的方式实现。具体实现如下: ```c int getLongestPath(Tree T, Tree *path) { if (T == NULL) { return 0; } Tree leftPath[MAX_TREE_DEPTH], rightPath[MAX_TREE_DEPTH]; int leftPathLen = getLongestPath(T->lchild, leftPath); int rightPathLen = getLongestPath(T->rchild, rightPath); if (leftPathLen >= rightPathLen) { leftPath[leftPathLen++] = T; *path = leftPath[leftPathLen-1]; memcpy(path+1, leftPath, sizeof(Tree)*leftPathLen); return leftPathLen; } else { rightPath[rightPathLen++] = T; *path = rightPath[rightPathLen-1]; memcpy(path+1, rightPath, sizeof(Tree)*rightPathLen); return rightPathLen; } } ``` 其中,path 是一个指向结点的指针数组,用来存储最长路径上的结点。 完整代码:

相关推荐

最新推荐

recommend-type

C++使用递归和非递归算法实现的二叉树叶子节点个数计算方法

主要介绍了C++使用递归和非递归算法实现的二叉树叶子节点个数计算方法,涉及C++二叉树的定义、遍历、统计相关操作技巧,需要的朋友可以参考下
recommend-type

二叉树中两结点最近的共同祖先算法

拟定出合适的二叉树的输入形式;  构造出相应的求共同祖先的算法;  能够以直观的形式观察到所建立的二叉树; 采用Microsoft Visual C++ 6.0 编译环境进行调试运行。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SPDK_NVMF_DISCOVERY_NQN是什么 有什么作用

SPDK_NVMF_DISCOVERY_NQN 是 SPDK (Storage Performance Development Kit) 中用于查询 NVMf (Non-Volatile Memory express over Fabrics) 存储设备名称的协议。NVMf 是一种基于网络的存储协议,可用于连接远程非易失性内存存储器。 SPDK_NVMF_DISCOVERY_NQN 的作用是让存储应用程序能够通过 SPDK 查询 NVMf 存储设备的名称,以便能够访问这些存储设备。通过查询 NVMf 存储设备名称,存储应用程序可以获取必要的信息,例如存储设备的IP地址、端口号、名称等,以便能
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

Windows 运行Python脚本

要在 Windows 上运行 Python 脚本,你需要先安装 Python。可以从官网下载 Python 安装包并按照提示进行安装。安装完成后,就可以在命令行中输入 `python` 命令,进入 Python 解释器环境。 接着,你可以编写 Python 脚本,保存为 `.py` 后缀的文件。在命令行中进入脚本所在的目录,输入 `python script.py` 命令来运行脚本。其中 `script.py` 是你的脚本文件名。 如果你想在 Windows 上运行一个 Python 程序,但不想打开命令行窗口,可以将脚本文件拖动到 Python 可执行文件 `python.exe` 上,