python trpo

时间: 2023-11-09 07:59:14 浏览: 133
TRPO(Trust Region Policy Optimization)是一种用于强化学习的优化算法。它是一种基于策略梯度的方法,旨在提高强化学习智能体的策略性能。TRPO 的主要思想是通过限制每次更新的策略改变幅度,以保持策略的稳定性。 TRPO 使用了 KL 散度作为约束来限制策略改变的大小。它通过最大化策略改进的目标函数,同时保持两个策略之间的 KL 散度在一个可接受的范围内。具体来说,TRPO 通过解决一个约束优化问题来更新策略,使得策略在每次迭代中都能够得到显著改进。 TRPO 在实践中已经取得了很好的效果,并被广泛应用于各种强化学习任务中。
相关问题

给我TRPO解决BipedalWalkerHardcore_v3的代码

TRPO(Trust Region Policy Optimization)是一种用于强化学习的优化算法,用于更新策略参数。下面是使用TRPO解决BipedalWalkerHardcore_v3的Python代码示例: ``` import gym import numpy as np import tensorflow as tf from scipy import optimize env = gym.make('BipedalWalkerHardcore-v3') # 策略网络 class PolicyNet: def __init__(self, state_dim, action_dim, hidden_size): self.state = tf.placeholder(tf.float32, [None, state_dim]) l1 = tf.layers.dense(self.state, hidden_size, tf.nn.relu) l2 = tf.layers.dense(l1, hidden_size, tf.nn.relu) self.action_mean = tf.layers.dense(l2, action_dim, tf.nn.tanh) self.action_std = tf.Variable(1.0, trainable=True) self.action = tf.placeholder(tf.float32, [None, action_dim]) self.advantage = tf.placeholder(tf.float32, [None]) normal_dist = tf.distributions.Normal(self.action_mean, self.action_std) log_prob = normal_dist.log_prob(self.action) loss = -tf.reduce_mean(log_prob * self.advantage) kl = tf.distributions.kl_divergence(normal_dist, normal_dist) self.kl_mean = tf.reduce_mean(kl) self.train_op = self._create_train_op(loss) def _create_train_op(self, loss): optimizer = tf.train.AdamOptimizer() grads_and_vars = optimizer.compute_gradients(loss) flat_grads = tf.concat([tf.reshape(g, [-1]) for g, _ in grads_and_vars], axis=0) var_shapes = [tf.reshape(v, [-1]).shape for _, v in grads_and_vars] var_sizes = [np.prod(s) for s in var_shapes] cum_sizes = np.cumsum([0] + var_sizes) flat_params = tf.concat([tf.reshape(v, [-1]) for _, v in grads_and_vars], axis=0) kl_grads = tf.gradients(self.kl_mean, grads_and_vars) kl_grads = [tf.reshape(g, [-1]) / tf.cast(tf.reduce_prod(s), tf.float32) for g, (s, _) in zip(kl_grads, var_shapes)] kl_grad = tf.concat(kl_grads, axis=0) grad_kl_grad = tf.reduce_sum(flat_grads * kl_grad) hessian_vector_product = tf.gradients(grad_kl_grad, flat_params) hessian_vector_product = tf.concat(hessian_vector_product, axis=0) grads_and_hvp = list(zip(hessian_vector_product, flat_params)) flat_grad_hvp = tf.concat([tf.reshape(g, [-1]) for g, _ in grads_and_hvp], axis=0) fisher_vector_product = flat_grad_hvp + 0.1 * flat_params gradient = tf.stop_gradient(fisher_vector_product) learning_rate = tf.sqrt(0.01 / tf.norm(gradient)) clipped_gradient = tf.clip_by_norm(gradient, 0.5) train_op = tf.assign_sub(flat_params, learning_rate * clipped_gradient) train_op = tf.group(*[tf.assign(v, p) for (v, _), p in zip(grads_and_vars, tf.split(flat_params, cum_sizes[1:-1]))]) return train_op def get_action(self, state): return self.action_mean.eval(feed_dict={self.state: state.reshape(1, -1)})[0] def get_kl(self, state, action): return self.kl_mean.eval(feed_dict={self.state: state, self.action: action}) def train(self, state, action, advantage): feed_dict = {self.state: state, self.action: action, self.advantage: advantage} self.train_op.run(feed_dict=feed_dict) # 值网络 class ValueNet: def __init__(self, state_dim, hidden_size): self.state = tf.placeholder(tf.float32, [None, state_dim]) l1 = tf.layers.dense(self.state, hidden_size, tf.nn.relu) l2 = tf.layers.dense(l1, hidden_size, tf.nn.relu) self.value = tf.layers.dense(l2, 1) self.target_value = tf.placeholder(tf.float32, [None]) loss = tf.reduce_mean(tf.square(self.value - self.target_value)) self.train_op = tf.train.AdamOptimizer().minimize(loss) def get_value(self, state): return self.value.eval(feed_dict={self.state: state.reshape(1, -1)})[0, 0] def train(self, state, target_value): feed_dict = {self.state: state, self.target_value: target_value} self.train_op.run(feed_dict=feed_dict) # 训练 def train(): state_dim = env.observation_space.shape[0] action_dim = env.action_space.shape[0] hidden_size = 64 policy_net = PolicyNet(state_dim, action_dim, hidden_size) value_net = ValueNet(state_dim, hidden_size) gamma = 0.99 lam = 0.95 batch_size = 2048 max_step = 1000000 render = False state = env.reset() for step in range(max_step): states = [] actions = [] rewards = [] values = [] for _ in range(batch_size): action = policy_net.get_action(state) next_state, reward, done, _ = env.step(action) states.append(state) actions.append(action) rewards.append(reward) if done: values.append(0) state = env.reset() else: values.append(value_net.get_value(next_state)) state = next_state if render: env.render() values = np.array(values) returns = np.zeros_like(rewards) advantages = np.zeros_like(rewards) last_return = 0 last_value = 0 last_advantage = 0 for t in reversed(range(batch_size)): returns[t] = rewards[t] + gamma * last_return delta = rewards[t] + gamma * last_value - values[t] advantages[t] = delta + gamma * lam * last_advantage last_return = returns[t] last_value = values[t] last_advantage = advantages[t] advantages = (advantages - np.mean(advantages)) / np.std(advantages) policy_net.train(np.array(states), np.array(actions), advantages) value_net.train(np.array(states), returns) if step % 100 == 0: print('step=%d, reward=%f' % (step, np.mean(rewards))) if np.mean(rewards) > 300: render = True train() ``` 这段代码使用TensorFlow实现了一个策略网络和一个值网络,使用TRPO算法更新策略参数和值函数参数。在训练过程中,首先采集一定数量的数据,然后计算每个状态的回报和优势,并使用这些数据来更新策略网络和值网络。在每一步训练之后,打印出当前的平均回报。当平均回报超过300时,开始渲染环境。

相关推荐

最新推荐

recommend-type

基于值函数和策略梯度的深度强化学习综述_刘建伟.pdf

除了DQN和DDPG,文章还提及了信赖域策略优化(TRUST Region Policy Optimization, TRPO)和异步优势演员评论家(Accelerated Advantage Actor-Critic, A3C)等策略梯度的变种。TRPO通过约束策略更新的幅度,保证了策略的...
recommend-type

IPQ4019 QSDK开源代码资源包发布

资源摘要信息:"IPQ4019是高通公司针对网络设备推出的一款高性能处理器,它是为需要处理大量网络流量的网络设备设计的,例如无线路由器和网络存储设备。IPQ4019搭载了强大的四核ARM架构处理器,并且集成了一系列网络加速器和硬件加密引擎,确保网络通信的速度和安全性。由于其高性能的硬件配置,IPQ4019经常用于制造高性能的无线路由器和企业级网络设备。 QSDK(Qualcomm Software Development Kit)是高通公司为了支持其IPQ系列芯片(包括IPQ4019)而提供的软件开发套件。QSDK为开发者提供了丰富的软件资源和开发文档,这使得开发者可以更容易地开发出性能优化、功能丰富的网络设备固件和应用软件。QSDK中包含了内核、驱动、协议栈以及用户空间的库文件和示例程序等,开发者可以基于这些资源进行二次开发,以满足不同客户的需求。 开源代码(Open Source Code)是指源代码可以被任何人查看、修改和分发的软件。开源代码通常发布在公共的代码托管平台,如GitHub、GitLab或SourceForge上,它们鼓励社区协作和知识共享。开源软件能够通过集体智慧的力量持续改进,并且为开发者提供了一个测试、验证和改进软件的机会。开源项目也有助于降低成本,因为企业或个人可以直接使用社区中的资源,而不必从头开始构建软件。 U-Boot是一种流行的开源启动加载程序,广泛用于嵌入式设备的引导过程。它支持多种处理器架构,包括ARM、MIPS、x86等,能够初始化硬件设备,建立内存空间的映射,从而加载操作系统。U-Boot通常作为设备启动的第一段代码运行,它为系统提供了灵活的接口以加载操作系统内核和文件系统。 标题中提到的"uci-2015-08-27.1.tar.gz"是一个开源项目的压缩包文件,其中"uci"很可能是指一个具体项目的名称,比如U-Boot的某个版本或者是与U-Boot配置相关的某个工具(U-Boot Config Interface)。日期"2015-08-27.1"表明这是该项目的2015年8月27日的第一次更新版本。".tar.gz"是Linux系统中常用的归档文件格式,用于将多个文件打包并进行压缩,方便下载和分发。" 描述中复述了标题的内容,强调了文件是关于IPQ4019处理器的QSDK资源,且这是一个开源代码包。此处未提供额外信息。 标签"软件/插件"指出了这个资源的性质,即它是一个软件资源,可能包含程序代码、库文件或者其他可以作为软件一部分的插件。 在文件名称列表中,"uci-2015-08-27.1"与标题保持一致,表明这是一个特定版本的软件或代码包。由于实际的文件列表中只提供了这一项,我们无法得知更多的文件信息,但可以推测这是一个单一文件的压缩包。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【PDF表格创建与编辑】:使用Apache PDFBox和iText库制作表格,表格处理不求人

![java 各种pdf处理常用库介绍与使用](https://img-blog.csdnimg.cn/img_convert/6ae15afdef45b1d8fe6d289f0065d18c.png) # 1. PDF表格创建与编辑概述 在当今数字化时代,PDF格式因其可移植性和可维护性成为了电子文档的首选。在诸多应用场景中,表格作为一种重要的信息传递工具,其创建与编辑的需求日益增长。本章节将为读者提供一个关于PDF表格创建与编辑的概述,为后续章节中使用Apache PDFBox和iText库进行深入探讨奠定基础。 ## 1.1 PDF表格的作用与重要性 PDF表格在商务沟通、数据分析
recommend-type

python输出txt文件

在Python中,你可以使用内置的`open()`函数来创建和写入TXT文件。下面是一个简单的例子: ```python # 打开文件(如果不存在则创建) with open('example.txt', 'w') as file: # 写入文本内容 file.write('这是你要写入的内容') # 如果你想追加内容而不是覆盖原有文件 # 使用 'a' 模式(append) # with open('example.txt', 'a') as file: # file.write('\n这是追加的内容') # 关闭文件时会自动调用 `close()` 方法,但使
recommend-type

高频组电赛必备:掌握数字频率合成模块要点

资源摘要信息:"2022年电赛 高频组必备模块 数字频率合成模块" 数字频率合成(DDS,Direct Digital Synthesis)技术是现代电子工程中的一种关键技术,它允许通过数字方式直接生成频率可调的模拟信号。本模块是高频组电赛参赛者必备的组件之一,对于参赛者而言,理解并掌握其工作原理及应用是至关重要的。 本数字频率合成模块具有以下几个关键性能参数: 1. 供电电压:模块支持±5V和±12V两种供电模式,这为用户提供了灵活的供电选择。 2. 外部晶振:模块自带两路输出频率为125MHz的外部晶振,为频率合成提供了高稳定性的基准时钟。 3. 输出信号:模块能够输出两路频率可调的正弦波信号。其中,至少有一路信号的幅度可以编程控制,这为信号的调整和应用提供了更大的灵活性。 4. 频率分辨率:模块提供的频率分辨率为0.0291Hz,这样的精度意味着可以实现非常精细的频率调节,以满足高频应用中的严格要求。 5. 频率计算公式:模块输出的正弦波信号频率表达式为 fout=(K/2^32)×CLKIN,其中K为设置的频率控制字,CLKIN是外部晶振的频率。这一计算方式表明了频率输出是通过编程控制的频率控制字来设定,从而实现高精度的频率合成。 在高频组电赛中,参赛者不仅需要了解数字频率合成模块的基本特性,还应该能够将这一模块与其他模块如移相网络模块、调幅调频模块、AD9854模块和宽带放大器模块等结合,以构建出性能更优的高频信号处理系统。 例如,移相网络模块可以实现对信号相位的精确控制,调幅调频模块则能够对信号的幅度和频率进行调整。AD9854模块是一种高性能的DDS芯片,可以用于生成复杂的波形。而宽带放大器模块则能够提供足够的增益和带宽,以保证信号在高频传输中的稳定性和强度。 在实际应用中,电赛参赛者需要根据项目的具体要求来选择合适的模块组合,并进行硬件的搭建与软件的编程。对于数字频率合成模块而言,还需要编写相应的控制代码以实现对K值的设定,进而调节输出信号的频率。 交流与讨论在电赛准备过程中是非常重要的。与队友、指导老师以及来自同一领域的其他参赛者进行交流,不仅可以帮助解决技术难题,还可以相互启发,激发出更多创新的想法和解决方案。 总而言之,对于高频组的电赛参赛者来说,数字频率合成模块是核心组件之一。通过深入了解和应用该模块的特性,结合其他模块的协同工作,参赛者将能够构建出性能卓越的高频信号处理设备,从而在比赛中取得优异成绩。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【PDF元数据管理】:如何使用Java库管理和编辑PDF元数据,元数据管理的秘密

![【PDF元数据管理】:如何使用Java库管理和编辑PDF元数据,元数据管理的秘密](https://www.iptc.org/std/photometadata/documentation/userguide/images/PhotoMetadata_UnderTheHood.jpg) # 1. PDF元数据管理概述 在当今数字化工作流程中,PDF文件以其平台独立性和格式固定性成为了文档交换的标准格式。元数据——关于数据的数据——在PDF中扮演了至关重要的角色,它们提供了文档的内容摘要和结构信息,使得文件管理更加高效。在本章中,我们将探讨PDF元数据的基础知识,它们如何增强文档的可用性,
recommend-type

TypeScript 二进制16在代码里怎么表示

在TypeScript中,如果你想表示二进制数16,你可以使用字符串字面量或者专门的二进制格式来表示。这里有几种常见的方法: 1. **字符串字面量**: ```typescript let binaryNumber: string = "0x10"; // 使用 '0x' 前缀标识这是一个十六进制数 ``` 或者直接写成: ```typescript let binaryNumber: string = "10"; // 这种形式适用于0-9的二进制数,TypeScript会自动识别其为十进制转义序列 ``` 2. **Number类型的数值**: 如果你想要将其转换为Number类型,
recommend-type

ThinkPHP开发的仿微博系统功能解析

资源摘要信息:"基于ThinkPHP的仿微博系统" 知识点概述: 1. ThinkPHP框架介绍: ThinkPHP是一个轻量级的、高性能的、符合MVC设计模式的PHP开发框架。它具有快速开发、灵活配置、丰富扩展等特点,非常适合用于开发Web应用程序。ThinkPHP倡导简单实用的设计理念,力求在保证性能的前提下,降低开发难度,提高开发效率。 2. 仿微博系统开发: 仿微博系统是指模拟微博这一社交媒体平台的网站或应用程序。这类系统通常包含用户注册登录、动态发布、信息流展示、评论互动、关注与粉丝管理、私信交流等核心功能。通过实现这些功能,用户可以在仿微博系统上实现信息的发布、分享和互动。 3. 文件名称解析: 提供的文件名称“DSthinkphpffv5”可能指示这是针对ThinkPHP框架开发的第五个版本的仿微博系统。文件名可能包含了版本号或者特定的项目标识。 详细知识点: 1. ThinkPHP的安装和配置: - 系统需求:了解ThinkPHP运行的服务器环境,如PHP版本、数据库支持等。 - 框架下载:获取ThinkPHP框架源代码,并解压。 - 环境配置:配置数据库连接、应用入口文件、路由设置等基础信息。 2. 仿微博系统的设计要点: - 数据库设计:设计用户表、动态表、评论表、关系表等核心数据表,确定表之间的关系和索引优化。 - MVC架构实现:编写Model、View和Controller,实现数据处理、界面展示和业务逻辑的分离。 - 用户模块:实现用户注册、登录、信息编辑等基本功能。 - 内容模块:设计动态发布、内容审核、状态更新等功能。 - 互动模块:实现评论、转发、点赞等互动机制。 - 关系链模块:构建用户关注与粉丝之间的关系,实现关注系统。 - 安全机制:确保系统安全性,防止SQL注入、XSS攻击、CSRF攻击等网络安全问题。 - 响应式设计:确保仿微博系统在不同设备上都能有良好的用户体验。 3. ThinkPHP的特色功能: - 模板引擎:掌握ThinkPHP内置的模板引擎,进行页面布局和数据显示。 - 插件系统:了解ThinkPHP的插件机制,扩展系统功能。 - 验证器:使用验证器进行数据验证,确保数据的正确性和安全性。 - 缓存处理:掌握缓存机制,优化性能,减少数据库压力。 4. 仿微博系统的后期维护和优化: - 系统测试:进行系统测试,包括功能测试、性能测试、安全测试等。 - 性能优化:对系统进行性能分析和优化,比如代码优化、数据库查询优化。 - 用户反馈:收集用户反馈,根据用户需求进行功能调整和改进。 5. 项目文件结构: - 入口文件:通常是index.php,负责启动整个应用。 - 应用目录:存放Controller、Model、View等核心文件。 - 配置目录:存放应用的全局配置文件,如数据库配置、缓存配置等。 - 公共文件:存放公共资源,如公共方法、全局变量等。 - 语言包目录:存放多语言文件,便于国际化处理。 - 模板目录:存放系统模板文件,用于生成动态网页。 总结: "基于ThinkPHP的仿微博系统.zip" 提供了使用ThinkPHP框架来构建一个类似微博的社交网络平台的完整解决方案。开发此类系统需要掌握ThinkPHP框架的使用,包括其安装、配置、核心架构设计、模块实现、安全措施、性能优化等方面的知识。同时,也需要具备数据库设计、前端设计、用户体验优化等综合技能。通过对这个项目的深入学习和实践,开发者可以加深对PHP框架和Web开发流程的理解。