stm32 dma 串口数据传输 数据覆盖

时间: 2024-05-23 11:06:28 浏览: 365
STM32 DMA(Direct Memory Access)是一种用于高效数据传输的技术,它可以在不需要CPU干预的情况下,直接将数据从外设传输到内存或者从内存传输到外设。在串口数据传输中,DMA可以用来实现数据的接收和发送。 对于串口数据接收,可以通过配置DMA通道,将串口接收数据的寄存器作为源地址,将内存中的缓冲区作为目的地址,然后启动DMA传输。当有新的数据到达串口接收寄存器时,DMA会自动将数据复制到内存缓冲区中,并触发相应的中断或者事件来通知CPU。 对于串口数据发送,可以通过配置DMA通道,将内存中的数据作为源地址,将串口发送寄存器作为目的地址,然后启动DMA传输。DMA会自动从内存中读取数据,并将其发送到串口发送寄存器中,完成数据的发送。 在使用DMA进行串口数据传输时,可能会遇到数据覆盖的问题。这种情况通常发生在DMA传输速度快于CPU处理速度的情况下。当DMA正在传输数据时,如果CPU没有及时处理完接收缓冲区中的数据,新的数据就会覆盖旧的数据,导致数据丢失。 为了解决数据覆盖的问题,可以采取以下几种方法: 1. 增加接收缓冲区的大小:通过增加接收缓冲区的大小,可以提高CPU处理数据的能力,减少数据覆盖的可能性。 2. 使用双缓冲区:可以使用两个接收缓冲区,一个用于DMA传输数据,另一个用于CPU处理数据。当DMA传输完成后,CPU可以立即开始处理另一个缓冲区中的数据,从而避免数据覆盖。 3. 使用DMA传输完成中断:可以配置DMA传输完成后触发中断,当CPU接收到中断请求时,立即处理接收缓冲区中的数据,从而避免数据覆盖。
相关问题

stm32dma串口数据收发

在STM32上使用DMA(直接内存访问)来实现串口数据的收发可以大幅度提高数据传输效率,减少CPU的负担。以下是一个基本的示例: ```c #include "stm32f10x.h" #define USART_RX_BUFFER_SIZE 256 volatile uint8_t usart_rx_buffer[USART_RX_BUFFER_SIZE]; volatile uint16_t usart_rx_write_index = 0; volatile uint16_t usart_rx_read_index = 0; void usart_init(void) { USART_InitTypeDef USART_InitStructure; GPIO_InitTypeDef GPIO_InitStructure; DMA_InitTypeDef DMA_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1 | RCC_APB2Periph_GPIOA, ENABLE); RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); // 配置USART1的GPIO GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; GPIO_Init(GPIOA, &GPIO_InitStructure); // 配置USART1 USART_InitStructure.USART_BaudRate = 115200; USART_InitStructure.USART_WordLength = USART_WordLength_8b; USART_InitStructure.USART_StopBits = USART_StopBits_1; USART_InitStructure.USART_Parity = USART_Parity_No; USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; USART_Init(USART1, &USART_InitStructure); USART_Cmd(USART1, ENABLE); // 配置DMA DMA_DeInit(DMA1_Channel5); DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&USART1->DR; DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)usart_rx_buffer; DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC; DMA_InitStructure.DMA_BufferSize = USART_RX_BUFFER_SIZE; DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte; DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte; DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; DMA_InitStructure.DMA_Priority = DMA_Priority_VeryHigh; DMA_InitStructure.DMA_M2M = DMA_M2M_Disable; DMA_Init(DMA1_Channel5, &DMA_InitStructure); DMA_Cmd(DMA1_Channel5, ENABLE); // 配置USART1的DMA接收 USART_DMACmd(USART1, USART_DMAReq_Rx, ENABLE); } void usart_rx_handler(void) { uint16_t rx_write_index = USART_RX_BUFFER_SIZE - DMA_GetCurrDataCounter(DMA1_Channel5); while (rx_write_index != usart_rx_write_index) { uint8_t data = usart_rx_buffer[usart_rx_read_index]; usart_rx_read_index = (usart_rx_read_index + 1) % USART_RX_BUFFER_SIZE; // 处理接收到的数据 // ... if (usart_rx_read_index == usart_rx_write_index) { break; } } } int main(void) { usart_init(); while (1) { usart_rx_handler(); } } ``` 在上述代码中,我们使用了DMA1通道5来实现USART1的接收,使用了循环模式,这意味着当DMA传输完成时,它将从USART1的数据寄存器中读取数据,并将其存储到usart_rx_buffer中。同时,我们使用了一个循环缓冲区来存储接收到的数据,然后在usart_rx_handler中处理接收到的数据。需要注意的是,在处理数据时,我们只能处理已经接收到的数据,而不能处理正在接收的数据。

stm32dma串口接收数据

在STM32上,可以使用DMA(Direct Memory Access,直接内存访问)来实现串口数据接收。DMA可以使CPU不必参与数据传输,节省CPU的时间,提高串口接收效率。 以下是基于STM32CubeMX和HAL库实现的DMA串口接收代码示例: 1. 配置串口和DMA 首先,使用STM32CubeMX配置串口和DMA。在Pinout & Configuration选项卡中,将USART的RX引脚分配为DMA通道的外设。在Configuration选项卡中,启用DMA controller并配置DMA通道和缓冲区大小。 2. 初始化串口和DMA 在代码中,初始化串口和DMA: ```c /*定义串口和DMA句柄*/ UART_HandleTypeDef huart1; DMA_HandleTypeDef hdma_usart1_rx; /*初始化串口和DMA*/ void MX_USART1_UART_Init(void) { /* USART1 parameter configuration*/ huart1.Instance = USART1; huart1.Init.BaudRate = 115200; huart1.Init.WordLength = UART_WORDLENGTH_8B; huart1.Init.StopBits = UART_STOPBITS_1; huart1.Init.Parity = UART_PARITY_NONE; huart1.Init.Mode = UART_MODE_RX; huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart1.Init.OverSampling = UART_OVERSAMPLING_16; huart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE; huart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT; if (HAL_UART_Init(&huart1) != HAL_OK) { Error_Handler(); } /* DMA controller clock enable */ __HAL_RCC_DMA2_CLK_ENABLE(); /* DMA interrupt init */ /* DMA2_Stream2_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA2_Stream2_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA2_Stream2_IRQn); /* DMA1_Channel2_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Channel2_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA1_Channel2_IRQn); /* DMA1_Channel3_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Channel3_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA1_Channel3_IRQn); /* DMA1_Channel4_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Channel4_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA1_Channel4_IRQn); /* DMA1_Channel5_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Channel5_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA1_Channel5_IRQn); /* DMA1_Channel6_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Channel6_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA1_Channel6_IRQn); /* DMA1_Channel7_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Channel7_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA1_Channel7_IRQn); /* Configure DMA request hdma_usart1_rx on DMA2_Stream2 */ hdma_usart1_rx.Instance = DMA2_Stream2; hdma_usart1_rx.Init.Channel = DMA_CHANNEL_4; hdma_usart1_rx.Init.Direction = DMA_PERIPH_TO_MEMORY; hdma_usart1_rx.Init.PeriphInc = DMA_PINC_DISABLE; hdma_usart1_rx.Init.MemInc = DMA_MINC_ENABLE; hdma_usart1_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE; hdma_usart1_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; hdma_usart1_rx.Init.Mode = DMA_CIRCULAR; hdma_usart1_rx.Init.Priority = DMA_PRIORITY_LOW; hdma_usart1_rx.Init.FIFOMode = DMA_FIFOMODE_DISABLE; if (HAL_DMA_Init(&hdma_usart1_rx) != HAL_OK) { Error_Handler(); } __HAL_LINKDMA(&huart1, hdmarx, hdma_usart1_rx); } ``` 3. 启动DMA接收 在初始化完成后,可以启动DMA接收: ```c HAL_UART_Receive_DMA(&huart1, (uint8_t*)rxBuffer, RX_BUFFER_SIZE); ``` 其中,rxBuffer是接收缓冲区,RX_BUFFER_SIZE是缓冲区大小。 4. 处理接收数据 DMA接收完成后,会触发DMA中断。在中断处理函数中,可以处理接收到的数据: ```c void DMA2_Stream2_IRQHandler(void) { HAL_DMA_IRQHandler(&hdma_usart1_rx); } void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) { if (huart->Instance == USART1) { /*处理接收到的数据*/ // ... } } ``` 在HAL_UART_RxCpltCallback回调函数中,可以处理接收到的数据。如果需要连续接收数据,可以将DMA的Mode设置为DMA_CIRCULAR,这样接收完成后会自动重新启动接收。 以上是基于STM32CubeMX和HAL库实现的DMA串口接收代码示例。如果需要更高的性能,可以使用DMA双缓冲技术,同时使用两个DMA通道交替接收数据,以提高效率。
阅读全文

相关推荐

最新推荐

recommend-type

在STM32上通过UART+DMA实现One-Wire总线

在STM32上通过UART+DMA实现One-Wire总线 在STM32微控制器上,One-Wire总线是一种常用的总线协议,它使用一根并联总线完成对于多个设备的访问。通过上拉的OD门实现多设备的读写操作,通过ID区别设备,通过CRC5完成...
recommend-type

基于微信小程序的社区门诊管理系统php.zip

基于Php语言设计并实现了微信小程序的社区门诊管理系统。该小程序基于B/S即所谓浏览器/服务器模式,选择MySQL作为后台数据库去开发并实现一个以微信小程序的社区门诊为核心的系统以及对系统的简易介绍。 用户注册,在用户注册页面通过填写账号、密码、确认密码、姓名、性别、手机、等信息进行注册操作; 用户登录,用户通过登录页面输入账号和密码,并点击登录进行小程序登录操作。 用户登陆微信端后,可以对首页、门诊信息、我的等功能进行详细操作 门诊信息,在门诊信息页面可以查看科室名称、科室类型、医生编号、医生姓名、 职称、坐诊时间、科室图片、点击次数、科室介绍等信息进行预约挂号操作 检查信息,在检查信息页面可以查看检查项目、检查地点、检查时间、检查费用、账号、姓名、医生编号、医生姓名、是否支付、审核回复、审核状态等信息进行支付操作
recommend-type

白色大气风格的设计师作品模板下载.zip

白色大气风格的设计师作品模板下载.zip
recommend-type

RStudio中集成Connections包以优化数据库连接管理

资源摘要信息:"connections:https" ### 标题解释 标题 "connections:https" 直接指向了数据库连接领域中的一个重要概念,即通过HTTP协议(HTTPS为安全版本)来建立与数据库的连接。在IT行业,特别是数据科学与分析、软件开发等领域,建立安全的数据库连接是日常工作的关键环节。此外,标题可能暗示了一个特定的R语言包或软件包,用于通过HTTP/HTTPS协议实现数据库连接。 ### 描述分析 描述中提到的 "connections" 是一个软件包,其主要目标是与R语言的DBI(数据库接口)兼容,并集成到RStudio IDE中。它使得R语言能够连接到数据库,尽管它不直接与RStudio的Connections窗格集成。这表明connections软件包是一个辅助工具,它简化了数据库连接的过程,但并没有改变RStudio的用户界面。 描述还提到connections包能够读取配置,并创建与RStudio的集成。这意味着用户可以在RStudio环境下更加便捷地管理数据库连接。此外,该包提供了将数据库连接和表对象固定为pins的功能,这有助于用户在不同的R会话中持续使用这些资源。 ### 功能介绍 connections包中两个主要的功能是 `connection_open()` 和可能被省略的 `c`。`connection_open()` 函数用于打开数据库连接。它提供了一个替代于 `dbConnect()` 函数的方法,但使用完全相同的参数,增加了自动打开RStudio中的Connections窗格的功能。这样的设计使得用户在使用R语言连接数据库时能有更直观和便捷的操作体验。 ### 安装说明 描述中还提供了安装connections包的命令。用户需要先安装remotes包,然后通过remotes包的`install_github()`函数安装connections包。由于connections包不在CRAN(综合R档案网络)上,所以需要使用GitHub仓库来安装,这也意味着用户将能够访问到该软件包的最新开发版本。 ### 标签解读 标签 "r rstudio pins database-connection connection-pane R" 包含了多个关键词: - "r" 指代R语言,一种广泛用于统计分析和图形表示的编程语言。 - "rstudio" 指代RStudio,一个流行的R语言开发环境。 - "pins" 指代R包pins,它可能与connections包一同使用,用于固定数据库连接和表对象。 - "database-connection" 指代数据库连接,即软件包要解决的核心问题。 - "connection-pane" 指代RStudio IDE中的Connections窗格,connections包旨在与之集成。 - "R" 代表R语言社区或R语言本身。 ### 压缩包文件名称列表分析 文件名称列表 "connections-master" 暗示了一个可能的GitHub仓库名称或文件夹名称。通常 "master" 分支代表了软件包或项目的稳定版或最新版,是大多数用户应该下载和使用的版本。 ### 总结 综上所述,connections包是一个专为R语言和RStudio IDE设计的软件包,旨在简化数据库连接过程并提供与Connections窗格的集成。它允许用户以一种更为方便的方式打开和管理数据库连接,而不直接提供与Connections窗格的集成。connections包通过读取配置文件和固定连接对象,增强了用户体验。安装connections包需通过remotes包从GitHub获取最新开发版本。标签信息显示了connections包与R语言、RStudio、数据库连接以及R社区的紧密联系。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Keil uVision5全面精通指南

# 摘要 Keil uVision5是一个集成开发环境,广泛应用于嵌入式系统的开发。本文从基础入门开始,详细介绍了Keil uVision5的项目管理、配置、编程实践、高级功能及技巧,并通过项目案例分析,深入阐述了其在实际开发中的应用。本篇论文特别注重于项目创建、目标配置、调试环境搭建、性能优化、脚本编程与自动化、高级调试技术,以及通过嵌入式操作系统集成和驱动开发流程的案例分析,展示了Keil uVision5的实用性和高效性。文章还展望了Keil uVision5的未来发展趋势,并提供了社区资源和学习渠道,为读者提供了一个全面掌握Keil uVision5的平台。 # 关键字 Keil u
recommend-type

flink提交给yarn19个全量同步MYsqlCDC的作业,flink的配置参数怎样设置

在Flink中,如果你需要将19个MySQL CDC(Change Data Capture)的全量同步作业提交到YARN上,你需要确保Flink集群和YARN进行了正确的集成,并配置了适当的参数。以下是可能涉及到的一些关键配置: 1. **并行度(Parallelism)**:每个作业的并行度应该设置得足够高,以便充分利用YARN提供的资源。例如,如果你有19个任务,你可以设置总并行度为19或者是一个更大的数,取决于集群规模。 ```yaml parallelism = 19 或者 根据实际资源调整 ``` 2. **YARN资源配置**:Flink通过`yarn.a
recommend-type

PHP博客旅游的探索之旅

资源摘要信息:"博客旅游" 博客旅游是一个以博客形式分享旅行经验和旅游信息的平台。随着互联网技术的发展和普及,博客作为一种个人在线日志的形式,已经成为人们分享生活点滴、专业知识、旅行体验等的重要途径。博客旅游正是结合了博客的个性化分享特点和旅游的探索性,让旅行爱好者可以记录自己的旅游足迹、分享旅游心得、提供目的地推荐和旅游攻略等。 在博客旅游中,旅行者可以是内容的创造者也可以是内容的消费者。作为创造者,旅行者可以通过博客记录下自己的旅行故事、拍摄的照片和视频、体验和评价各种旅游资源,如酒店、餐馆、景点等,还可以分享旅游小贴士、旅行日程规划等实用信息。作为消费者,其他潜在的旅行者可以通过阅读这些博客内容获得灵感、获取旅行建议,为自己的旅行做准备。 在技术层面,博客平台的构建往往涉及到多种编程语言和技术栈,例如本文件中提到的“PHP”。PHP是一种广泛使用的开源服务器端脚本语言,特别适合于网页开发,并可以嵌入到HTML中使用。使用PHP开发的博客旅游平台可以具有动态内容、用户交互和数据库管理等强大的功能。例如,通过PHP可以实现用户注册登录、博客内容的发布与管理、评论互动、图片和视频上传、博客文章的分类与搜索等功能。 开发一个功能完整的博客旅游平台,可能需要使用到以下几种PHP相关的技术和框架: 1. HTML/CSS/JavaScript:前端页面设计和用户交互的基础技术。 2. 数据库管理:如MySQL,用于存储用户信息、博客文章、评论等数据。 3. MVC框架:如Laravel或CodeIgniter,提供了一种组织代码和应用逻辑的结构化方式。 4. 服务器技术:如Apache或Nginx,作为PHP的运行环境。 5. 安全性考虑:需要实现数据加密、输入验证、防止跨站脚本攻击(XSS)等安全措施。 当创建博客旅游平台时,还需要考虑网站的可扩展性、用户体验、移动端适配、搜索引擎优化(SEO)等多方面因素。一个优质的博客旅游平台,不仅能够提供丰富的内容,还应该注重用户体验,包括页面加载速度、界面设计、内容的易于导航等。 此外,博客旅游平台还可以通过整合社交媒体功能,允许用户通过社交媒体账号登录、分享博客内容到社交网络,从而提升平台的互动性和可见度。 综上所述,博客旅游作为一个结合了旅行分享和在线日志的平台,对于旅行者来说,不仅是一个记录和分享旅行体验的地方,也是一个获取旅行信息、学习旅游知识的重要资源。而对于开发者来说,构建这样一个平台需要运用到多种技术和考虑多个技术细节,确保平台的功能性和用户体验。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【单片机编程实战】:掌握流水灯与音乐盒同步控制的高级技巧

![单片机编程](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-48cf6abe199bab09d31c122e1f49cea4.png) # 摘要 单片机作为电子技术领域的基础组件,广泛应用于各类控制项目。本文从基础开始,详细探讨了单片机在流水灯和音乐盒项目中的应用原理,并分析了如何实现这两个功能的同步控制。通过对硬件和软件层面的深入剖析,本文提供了一系列实践操作和高级技巧,旨在提升流水灯与音乐盒同步控制的性能和效率。通过本研究,读者将能够更好地理解和掌握单片机在复杂控制系统中的应用,进而创新开发更多