机器学习 --- 线性判别分析
时间: 2023-10-05 13:07:20 浏览: 114
线性判别分析
线性判别分析(Linear Discriminant Analysis,简称LDA)是一种常用的机器学习算法,它可以用于降低数据维度,同时保留最具类别区分度的特征。LDA主要通过计算样本类别之间的差异性和类内散度来实现降维。在LDA中,我们希望将数据投影到一个新的低维空间上,使得同一类样本的投影点尽可能接近,不同类样本的投影点尽可能分开。
LDA算法的主要步骤如下:
1. 对于给定的样本集,首先将其按照类别进行划分,得到各个类别的样本集合。
2. 计算各个类别样本集合的协方差矩阵。
3. 计算类内散度矩阵,即将各个类别样本集合的协方差矩阵加权求和。
4. 计算类间散度矩阵,即各个类别的样本均值之间的差异性。
5. 计算投影向量,即通过求解广义特征值问题得到投影向量。
6. 将样本点投影到投影向量上,得到降维后的数据。
这个过程可以通过数学公式和代码来实现,不同的实现方式可能略有不同。在给定代码中,第一部分是自己实现的LDA算法,第二部分是使用sklearn库中的LDA算法。
阅读全文