用遗传算法求解不同规模用遗传算法求解不同规模(如10个城市,20个城市,100个城市)的TSP问题(如10个城市,20个城市,100个城市)的TSP问题,使用python语言编写代码
时间: 2024-11-15 15:34:27 浏览: 32
遗传算法是一种基于生物进化理论的优化搜索技术,适用于解决复杂问题,如旅行商问题(Traveling Salesman Problem,TSP)。对于不同规模的城市数,TSP问题的复杂度会显著增加。下面是一个简化的Python遗传算法求解TSP问题的大致步骤:
首先,需要导入必要的库:
```python
import random
import numpy as np
from deap import base, creator, tools
```
创建个体和适应度函数:
```python
creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Individual", list, fitness=creator.FitnessMax)
def distance(city_list):
# 计算两点间的欧几里得距离或其他合适的距离计算方法
pass
def tsp_fitness(individual):
total_distance = sum(distance(city_list[i], city_list[j]) for i in range(len(city_list)) for j in (i+1) % len(city_list))
return total_distance,
```
初始化种群、选择、交叉和变异操作:
```python
def init_population(n, cities):
population = [creator.Individual(random.sample(cities, cities)) for _ in range(n)]
return population
def selection(population, toolbox, k):
return toolbox.select(population, k)
def crossover(parents, offspring_size):
toolbox = base.Toolbox()
toolbox.register("mate", tools.cxTwoPoint)
return [toolbox.mate(*parent) for parent in zip(*[iter(parents)]*2)]
def mutate(individual, mutation_rate):
toolbox = base.Toolbox()
toolbox.register("mutate", tools.mutShuffleIndexes, indpb=mutation_rate)
return toolbox.mutate(list(individual))
# 主循环
def genetic_algorithm(pop_size, generations, cities, mutation_rate):
pop = init_population(pop_size, cities)
best_solution = None
for g in range(generations):
offspring = crossover(pop, int(0.5 * pop_size))
offspring = [mutate(ind, mutation_rate) for ind in offspring]
offspring = [toolbox.clone(ind) for ind in offspring]
offspring = [tsp_fitness(ind)[0] if tsp_fitness(ind)[0] < (best_solution.fitness.values[0] if best_solution else float("inf")) else ind.fitness.values for ind in offspring]
offspring.sort(key=lambda x: x.fitness.values)
# 更新最佳解决方案
best_solution = offspring[0] if best_solution is None or offspring[0].fitness > best_solution.fitness else best_solution
pop[:] = offspring[:pop_size]
return best_solution, pop
```
现在你可以根据城市数量(例如10、20或100)调用`genetic_algorithm`函数:
```python
solution, best_path = genetic_algorithm(pop_size=100, generations=1000, cities=your_city_list, mutation_rate=0.01)
```
阅读全文