没有from unet_model import UNet # 假设已经定义了UNet模型
时间: 2024-06-16 18:08:19 浏览: 149
UNet是一种常用的深度学习模型,用于图像分割任务。它由Olaf Ronneberger等人在2015年提出,并在医学图像分割领域取得了很好的效果。
UNet的结构特点是对称的U形,由一个编码器和一个解码器组成。编码器部分负责提取图像的高级特征,而解码器部分则将这些特征映射回原始图像的尺寸,并生成分割结果。
在Python中,可以使用unet_model库中的UNet类来定义和使用UNet模型。通过导入UNet类,可以创建一个UNet对象,并使用其方法进行训练和预测。
相关问题
import glob import numpy as np import torch import os import cv2 from model.unet_model import UNet if __name__ == "__main__": # 选择设备,有cuda用cuda,没有就用cpu device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 加载网络,图片单通道,分类为1。 net = UNet(n_channels=1, n_classes=1) # 将网络拷贝到deivce中 net.to(device=device) # 加载模型参数 net.load_state_dict(torch.load('best_model.pth', map_location=device)) # 测试模式 net.eval() # 读取所有图片路径 tests_path = glob.glob('../data/data/test/test_image/*.png') # 遍历所有图片 for i in tests_path: # 保存结果地址 save_res_path = '../data/test/test_mask/*res.png' # 读取图片 img = cv2.imread(i) # 转为灰度图 img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) # 转为batch为1,通道为1,大小为512*512的数组 img = img.reshape(1, 1, img.shape[0], img.shape[1]) # 转为tensor img_tensor = torch.from_numpy(img) # 将tensor拷贝到device中,只用cpu就是拷贝到cpu中,用cuda就是拷贝到cuda中。 img_tensor = img_tensor.to(device=device, dtype=torch.float32) # 预测 pred = net(img_tensor) # 提取结果 pred = np.array(pred.data.cpu()[0])[0] # 处理结果 pred[pred >= 0.5] = 255 pred[pred < 0.5] = 0 # 保存图片 cv2.imwrite(save_res_path, pred) # print(pred) print("successfully save")
这段代码是一个用于图像分割的UNet模型的理代码。首先,它会检查是否有可用的CUDA设备,然后加载UNet模型并将其移动到相应的设备上。接下来,它会遍历所有测试图片的路径,读取并预处理每张图片。然后,使用加载的模型对图片进行预测,并将预测结果进行后处理,得到二值化的分割结果。最后,将结果保存到指定路径上。
值得注意的是,上述代码中的`save_res_path`变量应该是一个具体的文件路径,而不是一个通配符表达式。你需要将`save_res_path`修改为一个具体的文件路径,以保存每张图片的分割结果。
如果你有更多的问题,请继续提问。
import os import random import numpy as np import cv2 import keras from create_unet import create_model img_path = 'data_enh/img' mask_path = 'data_enh/mask' # 训练集与测试集的切分 img_files = np.array(os.listdir(img_path)) data_num = len(img_files) train_num = int(data_num * 0.8) train_ind = random.sample(range(data_num), train_num) test_ind = list(set(range(data_num)) - set(train_ind)) train_ind = np.array(train_ind) test_ind = np.array(test_ind) train_img = img_files[train_ind] # 训练的数据 test_img = img_files[test_ind] # 测试的数据 def get_mask_name(img_name): mask = [] for i in img_name: mask_name = i.replace('.jpg', '.png') mask.append(mask_name) return np.array(mask) train_mask = get_mask_name(train_img) test_msak = get_mask_name(test_img) def generator(img, mask, batch_size): num = len(img) while True: IMG = [] MASK = [] for i in range(batch_size): index = np.random.choice(num) img_name = img[index] mask_name = mask[index] img_temp = os.path.join(img_path, img_name) mask_temp = os.path.join(mask_path, mask_name) temp_img = cv2.imread(img_temp) temp_mask = cv2.imread(mask_temp, 0)/255 temp_mask = np.reshape(temp_mask, [256, 256, 1]) IMG.append(temp_img) MASK.append(temp_mask) IMG = np.array(IMG) MASK = np.array(MASK) yield IMG, MASK # train_data = generator(train_img, train_mask, 32) # temp_data = train_data.__next__() # 计算dice系数 def dice_coef(y_true, y_pred): y_true_f = keras.backend.flatten(y_true) y_pred_f = keras.backend.flatten(y_pred) intersection = keras.backend.sum(y_true_f * y_pred_f) area_true = keras.backend.sum(y_true_f * y_true_f) area_pred = keras.backend.sum(y_pred_f * y_pred_f) dice = (2 * intersection + 1)/(area_true + area_pred + 1) return dice # 自定义损失函数,dice_loss def dice_coef_loss(y_true, y_pred): return 1 - dice_coef(y_true, y_pred) # 模型的创建 model = create_model() # 模型的编译 model.compile(optimizer='Adam', loss=dice_coef_loss, metrics=[dice_coef]) # 模型的训练 history = model.fit_generator(generator(train_img, train_mask, 4), steps_per_epoch=100, epochs=10, validation_data=generator(test_img, test_msak, 4), validation_steps=4 ) # 模型的保存 model.save('unet_model.h5') # 模型的读取 model = keras.models.load_model('unet_model.h5', custom_objects={'dice_coef_loss': dice_coef_loss, 'dice_coef': dice_coef}) # 获取测试数据 test_generator = generator(test_img, test_msak, 32) img, mask = test_generator.__next__() # 模型的测试 model.evaluate(img, mask) # [0.11458712816238403, 0.885412871837616] 94%
上面这段代码是在导入一些库。它导入了 OS 库,Random 库,NumPy 库,CV2 库,Keras 库,以及一个叫做 Create_unet 的自定义模块。它还定义了两个字符串变量:img_path 和 mask_path,分别存储了图像数据和掩码数据的路径。
阅读全文