怎么用OLED模块显示中文
时间: 2023-08-11 12:00:55 浏览: 603
要在OLED模块上显示中文,你需要进行以下骤:
1. 准备字库:先,你需要准备一个包含中字符的字库文件。这个字库应该包含每个中文字符的字形数据,可以是点阵或矢量格式。你可以使用一些字库生成工具来创建自定义的中文字库。
2. 连接OLED模块:将OLED模块与STM32C8T6连接,包括VCC、GND和通信接口(通常是I2C或SPI)引脚。确保连接正确并使用正确的引脚配置。
3. 初始化OLED模块:根据OLED模块的规格和使用的通信接口,编写相应的代码来初始化OLED模块。这可能涉及到设置通信参数、发送命令和数据等操作。你可以参考OLED模块的数据手册或示例代码来完成初始化。
4. 设置中文显示:根据你选择的字库格式和库函数,将要显示的中文字符转换成对应的字库数据。然后,使用OLED模块的库函数将字库数据发送到OLED模块上,并设置显示位置和其他参数。
5. 刷新显示:完成中文字符的设置后,使用相应的库函数刷新OLED模块的显示缓冲区,将字符内容显示在屏幕上。根据库函数的不同,你可能需要提供字符的位置、大小、颜色等参数。
请注意,具体的实现方法可能因你使用的OLED模块和库函数而有所不同。你可以参考OLED模块的文档和示例代码来获取更详细的信息,并根据你的具体需求进行适当调整和修改。
相关问题
如何用oled显示中文
在使用OLED(有机发光二极管显示器)显示中文时,通常需要通过编码转换将汉字转换成OLED屏幕支持的字形数据。以下是基本步骤:
1. **选择字体**:找到支持中文显示的OLED专用字体,例如UTF-16、GB2312、GBK等编码格式。
2. **加载字体库**:如果你使用的开发平台支持,比如MicroPython for ESP32 OLED模块,会内置一些字体;如果需要自定义,可以下载并加载到设备内存中。
3. **处理字符编码**:将你要显示的汉字转码,确保它与你使用的字体编码一致。例如,如果是UTF-8编码的字符串,你需要转换成对应字体的编码格式。
4. **绘制文本**:使用OLED库提供的函数,设置字体、颜色、坐标等信息,然后逐个字符地绘制。在MicroPython中,这可能是类似`disp.print()`或`disp.show_str()`这样的函数。
5. **更新显示**:每次绘制完字符串后,记得刷新显示屏以看到实际的中文内容。
举个例子,在MicroPython中,可能会有这样的代码片段:
```python
import displayio
import terminalio
# 加载字体
font = terminalio.FONT
# 转换中文字符串
chinese_string = "你好,世界"
utf8_encoded = chinese_string.encode('utf-8')
# 创建位图字体网格
bitmap_grid = displayio.Bitmap(terminalio.FONT.get_glyph_count(), 8, 1)
codepoints = [ord(c) for c in utf8_encoded]
for index, codepoint in enumerate(codepoints):
bitmap_grid.bgra_bitmap[bitmap_grid.width * index : bitmap_grid.width * (index + 1), 0 : font.line_height] = font.glyph.bitmap_data[codepoint]
# 创建喷墨画布
bitmap_glyph = displayio.TileGrid(bitmap_grid, pixel_shader=displayio.ColorConverter())
text_area = displayio.Group()
text_area.append(bitmap_glyph)
# 显示在屏幕上
display.show(text_area)
```
使用stm32f103c8t6和ZE08甲醛传感器建立联系,同时使用SPI通信的OLED模块显示甲醛浓度,传感器接PB10和11,OLED接PA5和7传输数据,程序设计
以下是使用stm32f103c8t6和ZE08甲醛传感器建立联系,同时使用SPI通信的OLED模块显示甲醛浓度的程序设计:
```c
#include "stm32f10x.h"
#define OLED_DC_Pin GPIO_Pin_5
#define OLED_DC_Port GPIOA
#define OLED_CS_Pin GPIO_Pin_7
#define OLED_CS_Port GPIOA
void OLED_GPIO_init(void);
void OLED_write_cmd(unsigned char command);
void OLED_write_data(unsigned char data);
void OLED_init(void);
void OLED_show_str(unsigned char x, unsigned char y, unsigned char *str);
void SPI1_init(void);
void SPI1_send_byte(unsigned char byte);
unsigned char SPI1_receive_byte(void);
void USART2_init(void);
void USART2_send_byte(unsigned char byte);
void delay_ms(unsigned int ms);
int main(void)
{
unsigned char buf[10];
float concentration;
unsigned char str[10];
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB, ENABLE);
OLED_GPIO_init();
OLED_init();
SPI1_init();
USART2_init();
while(1)
{
GPIO_ResetBits(GPIOB, GPIO_Pin_10);
delay_ms(1000);
SPI1_send_byte(0xFF);
buf[0] = SPI1_receive_byte();
buf[1] = SPI1_receive_byte();
buf[2] = SPI1_receive_byte();
buf[3] = SPI1_receive_byte();
GPIO_SetBits(GPIOB, GPIO_Pin_10);
concentration = ((buf[0] * 256) + buf[1]) / 1000.0;
sprintf((char *)str, "%.2f mg/m3", concentration);
OLED_show_str(0, 1, str);
USART2_send_byte(buf[0]);
USART2_send_byte(buf[1]);
USART2_send_byte(buf[2]);
USART2_send_byte(buf[3]);
USART2_send_byte('\n');
delay_ms(5000);
}
}
void OLED_GPIO_init(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Pin = OLED_DC_Pin | OLED_CS_Pin;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure);
}
void OLED_write_cmd(unsigned char command)
{
GPIO_ResetBits(OLED_DC_Port, OLED_DC_Pin);
GPIO_ResetBits(OLED_CS_Port, OLED_CS_Pin);
SPI1_send_byte(command);
GPIO_SetBits(OLED_CS_Port, OLED_CS_Pin);
}
void OLED_write_data(unsigned char data)
{
GPIO_SetBits(OLED_DC_Port, OLED_DC_Pin);
GPIO_ResetBits(OLED_CS_Port, OLED_CS_Pin);
SPI1_send_byte(data);
GPIO_SetBits(OLED_CS_Port, OLED_CS_Pin);
}
void OLED_init(void)
{
OLED_write_cmd(0xAE); // display off
OLED_write_cmd(0x20); // addressing mode
OLED_write_cmd(0x10); // horizontal addressing mode
OLED_write_cmd(0xb0); // set page start address
OLED_write_cmd(0xc8); // set COM output scan direction
OLED_write_cmd(0x00); // set low column address
OLED_write_cmd(0x10); // set high column address
OLED_write_cmd(0x40); // set start line address
OLED_write_cmd(0x81); // set contrast control register
OLED_write_cmd(0xff); // set contrast to maximum
OLED_write_cmd(0xa1); // set segment re-map 95 to 0
OLED_write_cmd(0xa6); // set normal display
OLED_write_cmd(0xa8); // set multiplex ratio
OLED_write_cmd(0x3f); // 1/64 duty
OLED_write_cmd(0xa4); // display all on/resume to display
OLED_write_cmd(0xd3); // set display offset
OLED_write_cmd(0x00); // not offset
OLED_write_cmd(0xd5); // set display clock divide ratio/oscillator frequency
OLED_write_cmd(0xf0); // set divide ratio
OLED_write_cmd(0xd9); // set pre-charge period
OLED_write_cmd(0x22); // set pre-charge period
OLED_write_cmd(0xda); // set COM pins hardware configuration
OLED_write_cmd(0x12);
OLED_write_cmd(0xdb); // set vcomh
OLED_write_cmd(0x20); // 0.77xVcc
OLED_write_cmd(0x8d); // set charge pump enable/disable
OLED_write_cmd(0x14); // enable charge pump
OLED_write_cmd(0xaf); // turn on oled panel
}
void OLED_show_str(unsigned char x, unsigned char y, unsigned char *str)
{
unsigned char i, j;
for(i = 0; str[i] != '\0'; i++)
{
for(j = 0; j < 6; j++)
{
OLED_write_data(F6x8[(str[i] - 32) * 6 + j]);
}
}
}
void SPI1_init(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
SPI_InitTypeDef SPI_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_SPI1, ENABLE);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5 | GPIO_Pin_6 | GPIO_Pin_7;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOB, &GPIO_InitStructure);
SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex;
SPI_InitStructure.SPI_Mode = SPI_Mode_Master;
SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b;
SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low;
SPI_InitStructure.SPI_CPHA = SPI_CPHA_1Edge;
SPI_InitStructure.SPI_NSS = SPI_NSS_Soft;
SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_4;
SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB;
SPI_Init(SPI1, &SPI_InitStructure);
SPI_Cmd(SPI1, ENABLE);
}
void SPI1_send_byte(unsigned char byte)
{
while(SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_TXE) == RESET);
SPI_I2S_SendData(SPI1, byte);
while(SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_RXNE) == RESET);
SPI_I2S_ReceiveData(SPI1);
}
unsigned char SPI1_receive_byte(void)
{
while(SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_TXE) == RESET);
SPI_I2S_SendData(SPI1, 0xFF);
while(SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_RXNE) == RESET);
return SPI_I2S_ReceiveData(SPI1);
}
void USART2_init(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
USART_InitTypeDef USART_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure);
USART_InitStructure.USART_BaudRate = 115200;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Tx;
USART_Init(USART2, &USART_InitStructure);
USART_Cmd(USART2, ENABLE);
}
void USART2_send_byte(unsigned char byte)
{
while(USART_GetFlagStatus(USART2, USART_FLAG_TC) == RESET);
USART_SendData(USART2, byte);
}
void delay_ms(unsigned int ms)
{
unsigned int i, j;
for(i = 0; i < ms; i++)
{
for(j = 0; j < 1000; j++);
}
}
```
注意事项:
1. 在使用 SPI 通信时,需要先拉低从机的片选引脚(本例中为 PB10),并在传输完数据后再拉高。
2. OLED 模块使用的是 I2C 通信,本例中未使用 I2C,而是采用了自己定义的一组字符库(F6x8),因此 OLED 模块只能显示英文字母和数字,并且是单色的。如果需要显示中文或多种颜色,需要使用 I2C 通信,并且设置不同的字符库和颜色值。
阅读全文