vmd-ssa-gru
时间: 2023-09-05 21:02:04 浏览: 144
基于VMD-SSA-GRU、VMD-GRU、GRU的多变量时间序列预测(Matlab完整程序和数据)
5星 · 资源好评率100%
vmd-ssa-gru是一种深度学习模型,它结合了VMD(Variational Mode Decomposition,变分模态分解)和SSA(Singular Spectrum Analysis,奇异谱分析)方法,并使用了GRU(Gated Recurrent Unit,门控循环单元)作为网络结构。
VMD是一种信号处理技术,用于将非平稳信号分解为不同的调频模态。它通过优化一个能量函数来迭代求解信号的调频模态,并使用一个约束项来保持模态之间的正交性。这种分解方法可以提取信号中不同频率分量的信息。
SSA是一种基于时间序列的分析方法,它主要用于提取信号中的周期性成分。它通过构建一个特殊的协方差矩阵和特征向量矩阵来对信号进行分解,并使用奇异值分解的方法提取重要的成分。SSA可以从信号中提取出周期性模式和趋势信息。
在vmd-ssa-gru中,VMD和SSA被用于对信号进行分解和特征提取,然后这些特征被用作GRU网络的输入。GRU是一种循环神经网络结构,特别适用于对时间序列数据进行建模。它通过使用门控机制来控制信息的传递和遗忘,有效地捕捉序列中的长期依赖关系。
通过将VMD和SSA的分解结果作为GRU网络的输入,vmd-ssa-gru可以充分利用VMD和SSA提取的特征信息,并结合GRU网络的建模能力,对复杂的非平稳时间序列数据进行建模和预测。这种模型在信号处理、时间序列分析和预测等领域有广泛的应用,能够提高对非平稳信号的分析和预测的准确性。
阅读全文