Describe+the+steps+that+transform+a+program+written+in+a+high-level language+such+as+C+into+a+repres
时间: 2024-03-31 11:29:43 浏览: 54
将高级语言(如C语言)编写的程序转化为可执行的表示形式的步骤如下:
1. 编写源代码:使用高级语言编写程序的源代码。源代码是以人类可读的形式编写的,使用高级语言的语法和语义规则。
2. 预处理:在编译之前,源代码需要经过预处理。预处理器会处理源代码中的预处理指令,例如#include和#define,并将它们替换为实际的代码。
3. 编译:编译器将预处理后的源代码转换为低级的中间表示形式,通常是机器码或者字节码。编译器会进行词法分析、语法分析、语义分析和优化等步骤,确保代码的正确性和效率。
4. 链接:如果程序中使用了外部库或者其他模块,编译后的目标文件需要进行链接。链接器将目标文件与所需的库文件进行合并,生成最终的可执行文件。
5. 加载:操作系统将可执行文件加载到内存中,并为其分配必要的资源。加载过程包括内存分配、符号解析和地址重定位等步骤。
6. 执行:一旦程序被加载到内存中,操作系统会将控制权交给程序的入口点,程序开始执行。计算机根据指令逐条执行程序,并根据程序的逻辑进行相应的操作。
相关问题
Sketch+and+describe+the+main+components+of+John+von+Neuman+Architecture.+Explain+its+main+advantages
冯·诺依曼体系结构是一种计算机体系结构,由冯·诺依曼于1945年提出。它包括以下主要组件:
1. 中央处理器(CPU):负责执行指令和控制计算机的操作。它由算术逻辑单元(ALU)和控制单元(CU)组成。
2. 存储器:用于存储指令和数据。冯·诺依曼体系结构使用统一的存储器来存储指令和数据,这意味着指令和数据都以相同的方式存储和访问。
3. 输入/输出设备(I/O):用于与外部设备进行通信,例如键盘、鼠标、显示器等。
4. 总线:用于在各个组件之间传输数据和控制信号。总线分为数据总线、地址总线和控制总线。
冯·诺依曼体系结构的主要优势包括:
1. 存储程序:指令和数据都存储在同一存储器中,使得程序可以被视为数据,并且可以通过修改存储器中的指令来改变程序的行为。
2. 可编程性:由于指令和数据存储在同一存储器中,计算机可以根据不同的需求加载不同的程序,实现多种功能。
3. 有效性:冯·诺依曼体系结构使用了统一的存储器和总线结构,简化了计算机的设计和实现,提高了计算机的效率和可靠性。
4. 扩展性:由于指令和数据存储在同一存储器中,可以通过增加存储器的容量来扩展计算机的功能和性能。
The complex number is widely used in circuit science. By using the sinusoidal nature of alternating current, the capacitance and reactance are given the resistance of the complex value, that is, the impedance. Then the calculation process only involves the four operations of the complex number, which greatly reduces the difficulty. Please define addition, subtraction, multiplication and division operator of complex. Write a program to realize + - * / operator overloading. The main functions are as follows: (1) Realize the addition, subtraction, multiplication and division of two complex numbers (C1 and C2). (2) Realize the addition, subtraction, multiplication and division of complex number C1 and integer num. (3) Realize the addition, subtraction, multiplication and division of integer number and complex number C1. Input format: Please write the input format here. For example: 1.0 2.0 3.0 4.0 5 Output format: Please describe the output format here. For example: c1+c2=(4.00,6.00i) c1-c2=(-2.00,-2.00i) c1*c2=(-5.00,10.00i) c1/c2=(0.44,0.08i) c1+num=(6.00,2.00i) c1-num=(-4.00,2.00i) c1*num=(5.00,10.00i) c1/num=(0.20,0.40i) num+c1=(6.00,2.00i) num-c1=(4.00,-2.00i) num*c1=(5.00,10.00i) num/c1=(1.00,-2.00i)
Sure, I can help you with that! Here's the input format:
For addition, subtraction, multiplication, and division of two complex numbers (C1 and C2):
```
C1_real C1_imaginary C2_real C2_imaginary
```
For addition, subtraction, multiplication, and division of complex number C1 and integer num:
```
C1_real C1_imaginary num
```
For addition, subtraction, multiplication, and division of integer number and complex number C1:
```
num C1_real C1_imaginary
```
And here's a program in Python to overload the +, -, *, and / operators for complex numbers:
```python
class Complex:
def __init__(self, real, imaginary):
self.real = real
self.imaginary = imaginary
def __add__(self, other):
return Complex(self.real + other.real, self.imaginary + other.imaginary)
def __sub__(self, other):
return Complex(self.real - other.real, self.imaginary - other.imaginary)
def __mul__(self, other):
return Complex(self.real * other.real - self.imaginary * other.imaginary, self.real * other.imaginary + self.imaginary * other.real)
def __truediv__(self, other):
denominator = other.real ** 2 + other.imaginary ** 2
return Complex((self.real * other.real + self.imaginary * other.imaginary) / denominator, (self.imaginary * other.real - self.real * other.imaginary) / denominator)
def __radd__(self, other):
return Complex(self.real + other, self.imaginary)
def __rsub__(self, other):
return Complex(other - self.real, -self.imaginary)
def __rmul__(self, other):
return Complex(other * self.real, other * self.imaginary)
def __truediv__(self, other):
denominator = self.real ** 2 + self.imaginary ** 2
return Complex(other * self.real / denominator, -other * self.imaginary / denominator)
def __str__(self):
if self.imaginary >= 0:
return f"({self.real:.2f}+{self.imaginary:.2f}i)"
else:
return f"({self.real:.2f}{self.imaginary:.2f}i)"
# example usage
C1_real, C1_imaginary, C2_real, C2_imaginary, num = map(float, input().split())
C1 = Complex(C1_real, C1_imaginary)
C2 = Complex(C2_real, C2_imaginary)
print(f"c1+c2={C1+C2}")
print(f"c1-c2={C1-C2}")
print(f"c1*c2={C1*C2}")
print(f"c1/c2={C1/C2}")
print(f"c1+num={C1+num}")
print(f"c1-num={C1-num}")
print(f"c1*num={C1*num}")
print(f"c1/num={C1/num}")
print(f"num+c1={num+C1}")
print(f"num-c1={num-C1}")
print(f"num*c1={num*C1}")
print(f"num/c1={num/C1}")
```
Hope that helps! Let me know if you have any questions.
阅读全文