infoNCE loss
时间: 2024-04-25 22:24:58 浏览: 74
回答: InfoNCE loss是一种用于对比学习的损失函数。它在形式上与交叉熵损失函数相似,但在使用上有一些区别。在有监督学习中,交叉熵损失函数的类别数量由数据集确定,例如ImageNet数据集有1000个类别,那么k就是1000。而在对比学习中,InfoNCE loss的类别数量通常只有两类或几类。这是因为在对比学习中,每个样本都可以看作是一个类别,而不需要进行复杂的softmax操作。相比于交叉熵损失函数,InfoNCE loss的计算复杂度较低且更适用于对比学习任务。\[2\]\[3\]
#### 引用[.reference_title]
- *1* [对比学习和度量学习loss的理解](https://blog.csdn.net/orangerfun/article/details/124003841)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item]
- *2* [损失函数InfoNCE loss和cross entropy loss以及温度系数](https://blog.csdn.net/qq_29788741/article/details/127183960)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item]
- *3* [推荐系统笔记(十):InfoNCE Loss 损失函数](https://blog.csdn.net/qq_46006468/article/details/126076039)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
阅读全文