transformer 结构
时间: 2023-10-04 17:03:12 浏览: 135
transformer的 encoder-decoder结构基于tensorflow实现的中文语音识别项目.zip
Transformer结构是一种用于自然语言处理的神经网络架构。它由编码器(Encoder)和解码器(Decoder)组成。编码器负责将输入序列(例如句子)编码为一系列隐藏表示,而解码器则根据编码器的输出和先前的输出来生成目标序列(例如翻译的句子)。Transformer的核心是自注意力机制(Self-Attention),它允许模型在处理输入时同时关注到输入序列的不同部分,从而捕捉到更丰富的上下文信息。
自注意力机制通过计算输入序列中每个位置的注意力权重来实现。这些权重表示了每个位置对其他位置的重要程度,从而在编码器和解码器的不同层之间传递信息。在Transformer中,自注意力机制被称为多头注意力(Multi-Head Attention),通过并行计算多个注意力头来获得不同的表示能力。
除了自注意力机制,Transformer中还包含了前馈神经网络(Feed-Forward Neural Network)层,用于对每个位置的隐藏表示进行非线性变换。
总结来说,Transformer结构通过编码器和解码器的组合,以及自注意力机制和前馈神经网络的使用,实现了在自然语言处理任务中取得出色效果的能力。
阅读全文