``` if(fabs(KeyenceData.Thickness) < 0.01) { KEYENCE_RECOVER; ```

时间: 2024-04-20 10:19:34 浏览: 10
这段代码是一个条件语句,用于判断`KeyenceData.Thickness`的绝对值是否小于0.01。如果满足这个条件,就会执行`KEYENCE_RECOVER`这个操作。 具体解释如下: 1. `fabs()`是一个数学函数,用于计算一个数的绝对值。在这里,它被用来计算`KeyenceData.Thickness`的绝对值。 2. `KeyenceData.Thickness`是一个变量,它的值被用于判断是否满足条件。 3. `<`是一个比较运算符,用于判断左边的值是否小于右边的值。 4. `0.01`是一个常量,它被用作比较的参考值。 5. 如果`KeyenceData.Thickness`的绝对值小于0.01,那么条件成立,就会执行`KEYENCE_RECOVER`这个操作。`KEYENCE_RECOVER`可能是一个函数或者宏定义,具体的功能需要查看代码其他部分来确定。
相关问题

请详细解释下这段代码void FaceTracker::OnNewFaceData( const std::vector<human_sensing::CrosFace>& faces) { // Given |f1| and |f2| from two different (usually consecutive) frames, treat // the two rectangles as the same face if their position delta is less than // kFaceDistanceThresholdSquare. // // This is just a heuristic and is not accurate in some corner cases, but we // don't have face tracking. auto is_same_face = [&](const Rect<float>& f1, const Rect<float>& f2) -> bool { const float center_f1_x = f1.left + f1.width / 2; const float center_f1_y = f1.top + f1.height / 2; const float center_f2_x = f2.left + f2.width / 2; const float center_f2_y = f2.top + f2.height / 2; constexpr float kFaceDistanceThresholdSquare = 0.1 * 0.1; const float dist_square = std::pow(center_f1_x - center_f2_x, 2.0f) + std::pow(center_f1_y - center_f2_y, 2.0f); return dist_square < kFaceDistanceThresholdSquare; }; for (const auto& f : faces) { FaceState s = { .normalized_bounding_box = Rect<float>( f.bounding_box.x1 / options_.active_array_dimension.width, f.bounding_box.y1 / options_.active_array_dimension.height, (f.bounding_box.x2 - f.bounding_box.x1) / options_.active_array_dimension.width, (f.bounding_box.y2 - f.bounding_box.y1) / options_.active_array_dimension.height), .last_detected_ticks = base::TimeTicks::Now(), .has_attention = std::fabs(f.pan_angle) < options_.pan_angle_range}; bool found_matching_face = false; for (auto& known_face : faces_) { if (is_same_face(s.normalized_bounding_box, known_face.normalized_bounding_box)) { found_matching_face = true; if (!s.has_attention) { // If the face isn't looking at the camera, reset the timer. s.first_detected_ticks = base::TimeTicks::Max(); } else if (!known_face.has_attention && s.has_attention) { // If the face starts looking at the camera, start the timer. s.first_detected_ticks = base::TimeTicks::Now(); } else { s.first_detected_ticks = known_face.first_detected_ticks; } known_face = s; break; } } if (!found_matching_face) { s.first_detected_ticks = base::TimeTicks::Now(); faces_.push_back(s); } } // Flush expired face states. for (auto it = faces_.begin(); it != faces_.end();) { if (ElapsedTimeMs(it->last_detected_ticks) > options_.face_phase_out_threshold_ms) { it = faces_.erase(it); } else { ++it; } } }

这段代码是一个人脸追踪器的实现,输入参数是一个包含多个人脸信息的向量faces。该函数会对每个人脸进行处理,首先将人脸的位置和大小进行归一化,然后遍历已知人脸向量faces_,判断该人脸是否与已知人脸的位置相近,若相近则更新该已知人脸的状态,否则将该人脸加入已知人脸向量faces_。对于已知人脸的状态,如果人脸没有注视相机,则重置计时器;如果人脸开始注视相机,则开始计时;如果人脸一直注视相机,则更新计时器状态。最后,将已经过期的人脸状态从已知人脸向量faces_中删除。该代码实现了简单的人脸追踪与状态更新,但也存在一些不准确的情况,需要进一步改进。

def predict_y(self, X_test): m = self._X_train.shape[0] y_pre = [] for intX in X_test: minus_mat = np.fabs(np.tile(intX, (m, 1)) - self._X_train) # 将新的实例复制成m行1列,并进行相减 sq_minus_mat = minus_mat ** self.p sq_distance = sq_minus_mat.sum(axis=1) diff_sq_distance = sq_distance ** float(1 / self.p) sorted_distance_index = diff_sq_distance.argsort() # 记录距离最近的k个点的索引 class_count = {} vola = [] for i in range(self.k): vola = self._y_train[sorted_distance_index[i]] class_count[vola] = class_count.get(vola, 0) + 1 # 统计k个点中所属各个类别的实例数目 sorted_class_count = sorted(class_count.items(), key=operator.itemgetter(1),reverse=True) # 返回列表,元素为元组。每个类别以及对应的实例数目 y_pre.append((sorted_class_count[0][0])) return (np.array(y_pre))详细讲解这段代码

这段代码实现了KNN算法的预测过程,主要包括以下几个步骤: 1. 计算测试集中每个实例与训练集中所有实例的距离,使用的是$L_p$距离公式,其中$p$为参数。距离计算完之后,将距离从小到大排序,得到距离最近的$k$个点。 ``` minus_mat = np.fabs(np.tile(intX, (m, 1)) - self._X_train) # 将新的实例复制成m行1列,并进行相减 sq_minus_mat = minus_mat ** self.p sq_distance = sq_minus_mat.sum(axis=1) diff_sq_distance = sq_distance ** float(1 / self.p) sorted_distance_index = diff_sq_distance.argsort() # 记录距离最近的k个点的索引 ``` 2. 统计这$k$个点中所属各个类别的实例数目,选择实例数目最多的类别作为测试集实例的预测值。 ``` class_count = {} vola = [] for i in range(self.k): vola = self._y_train[sorted_distance_index[i]] class_count[vola] = class_count.get(vola, 0) + 1 # 统计k个点中所属各个类别的实例数目 sorted_class_count = sorted(class_count.items(), key=operator.itemgetter(1),reverse=True) # 返回列表,元素为元组。每个类别以及对应的实例数目 y_pre.append((sorted_class_count[0][0])) ``` 3. 将所有测试集实例的预测值保存在一个列表中,最后返回该列表作为KNN算法的预测结果。 ``` return (np.array(y_pre)) ``` 需要注意的是,代码中的一些变量含义如下: - `self._X_train`:训练集的特征矩阵,形状为$m\times n$,其中$m$为训练集实例数,$n$为特征数。 - `self._y_train`:训练集的标签向量,形状为$m\times 1$,其中$m$为训练集实例数。 - `X_test`:测试集的特征矩阵,形状为$t\times n$,其中$t$为测试集实例数。 - `y_pre`:保存测试集实例的预测值的列表。 - `self.p`:$L_p$距离公式中的参数$p$,一般取值为$1$或$2$。

相关推荐

void Trajectory::predict_box( uint idx_duration, std::vector<Box>& vec_box, std::vector<Eigen::MatrixXf, Eigen::aligned_allocatorEigen::MatrixXf>& vec_cova, bool& is_replay_frame) { vec_box.clear(); vec_cova.clear(); if (is_replay_frame) { for (auto iter = map_current_box_.begin(); iter != map_current_box_.end(); ++iter) { Destroy(iter->second.track_id()); } m_track_start_.Clear_All(); NU = 0; is_replay_frame = false; } Eigen::MatrixXf F_temp = F_; F_temp(0, 1) = idx_duration * F_(0, 1); F_temp(2, 3) = idx_duration * F_(2, 3); F_temp(4, 5) = idx_duration * F_(4, 5); uint64_t track_id; Eigen::Matrix<float, 6, 1> state_lidar; Eigen::Matrix<float, 6, 6> P_kkminus1; Eigen::Matrix3f S_temp; for (auto beg = map_current_box_.begin(); beg != map_current_box_.end(); ++beg) { float t = (fabs(0.1 - beg->second.frame_duration()) > 0.05) ? 0.1 : 0.2 - beg->second.frame_duration(); F_temp(0, 1) = t; F_temp(2, 3) = t; F_temp(4, 5) = t; // uint64_t timestamp_new = beg->second.timestamp() + uint(10.0 * t * NANO_FRAME); track_id = beg->first; state_lidar = F_temp * map_lidar_state_.at(track_id); P_kkminus1 = F_temp * map_lidar_cova_.at(track_id) * F_temp.transpose() + Q_lidar_; S_temp = H_ * P_kkminus1 * H_.transpose() + R_lidar_; float psi_new = (1 - P_D_ * P_G_) * beg->second.psi() / (1 - P_D_ * P_G_ * beg->second.psi()); Box bbox = beg->second; bbox.set_psi(psi_new); // bbox.set_timestamp(timestamp_new); bbox.set_position_x(state_lidar(0)); bbox.set_position_y(state_lidar(2)); bbox.set_position_z(state_lidar(4)); bbox.set_speed_x(state_lidar(1)); bbox.set_speed_y(state_lidar(3)); bbox.set_speed_z(state_lidar(5)); vec_box.emplace_back(bbox); vec_cova.emplace_back(S_temp); } AINFO << "Finish predict with duration frame num: " << idx_duration; } 代码解读

解释这段代码static void chassis_control_loop(chassis_move_t *chassis_move_control_loop) { fp32 max_vector = 0.0f, vector_rate = 0.0f; fp32 temp = 0.0f; fp32 wheel_speed[4] = {0.0f, 0.0f, 0.0f, 0.0f}; uint8_t i = 0; float position_error, speed_error; float position_output, speed_output; float current_position, current_speed; float target_position, target_speed; chassis_move_control_loop->vx_set=vx_set; chassis_move_control_loop->vy_set=vy_set; chassis_move_control_loop->wz_set=angle_set; chassis_vector_to_mecanum_wheel_speed(chassis_move_control_loop->vx_set, chassis_move_control_loop->vy_set, chassis_move_control_loop->wz_set, wheel_speed); if (chassis_move_control_loop->chassis_mode == CHASSIS_VECTOR_RAW) { for (i = 0; i < 4; i++) { chassis_move_control_loop->motor_chassis[i].give_current = (int16_t)(wheel_speed[i]); } } for (i = 0; i < 4; i++) { chassis_move_control_loop->motor_chassis[i].speed_set = wheel_speed[i]; temp = fabs(chassis_move_control_loop->motor_chassis[i].speed_set); if (max_vector < temp) { max_vector = temp; } } if (max_vector > MAX_WHEEL_SPEED) { vector_rate = MAX_WHEEL_SPEED / max_vector; for (i = 0; i < 4; i++) { chassis_move_control_loop->motor_chassis[i].speed_set *= vector_rate; } } for (i = 0; i < 4; i++) { PID_Calc(&chassis_move_control_loop->motor_speed_pid[i], chassis_move_control_loop->motor_chassis[i].speed, chassis_move_control_loop->motor_chassis[i].speed_set); } for (i = 0; i < 4; i++) { chassis_move_control_loop->motor_chassis[i].give_current = (int16_t)(chassis_move_control_loop->motor_speed_pid[i].out); } }

最新推荐

recommend-type

基于深度学习的零样本识别.zip

基于深度学习的零样本识别.zip
recommend-type

《大数据原理》LSH算法实现

用map-reduce的形式实现了LSH算法
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

机器学习怎么将excel转为csv文件

机器学习是一种利用计算机算法和统计数据的方法来训练计算机来进行自动学习的科学,无法直接将excel文件转为csv文件。但是可以使用Python编程语言来读取Excel文件内容并将其保存为CSV文件。您可以使用Pandas库来读取Excel文件,并使用to_csv()函数将其保存为CSV格式。以下是代码示例: ```python import pandas as pd # 读取 Excel 文件 excel_data = pd.read_excel('example.xlsx') # 将数据保存为 CSV 文件 excel_data.to_csv('example.csv', index=
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

写出一个拉格朗日多项式插值程序,并调用该函数做图

好的,以下是一个使用拉格朗日多项式进行插值的 Python 代码: ``` import numpy as np import matplotlib.pyplot as plt def lagrangeInterpolation(x, y, x_interp): """ 使用拉格朗日多项式进行插值 x: 已知点的 x 坐标数组 y: 已知点的 y 坐标数组 x_interp: 插值点的 x 坐标数组 """ n = len(x) m = len(x_interp) L = np.zeros([n, m]) fo