yolov5交通标志识别GTSRB
时间: 2023-12-10 10:36:05 浏览: 194
为了使用YOLOv5算法进行交通标志识别,我们需要进行以下步骤:
1. 下载CCTSDB数据集和YOLOv5代码库
```shell
git clone https://github.com/csust7zhangjm/CCTSDB.git
git clone https://github.com/ultralytics/yolov5.git
```
2. 将CCTSDB数据集转换为YOLOv5所需的格式
```shell
cd CCTSDB
python3 cctsdb2yolo.py
```
3. 将数据集分为训练集和验证集
```shell
python3 split_train_val.py
```
4. 在训练集上训练YOLOv5模型
```shell
cd ../yolov5
python3 train.py --img 640 --batch 16 --epochs 100 --data ../CCTSDB/cctsdb.yaml --cfg ./models/yolov5s.yaml --weights '' --name yolov5s_results
```
5. 在验证集上测试模型性能
```shell
python3 test.py --img 640 --conf 0.001 --data ../CCTSDB/cctsdb.yaml --weights ./runs/train/yolov5s_results/weights/best.pt
```
6. 对测试集进行预测
```shell
python3 detect.py --source ../CCTSDB/test --conf 0.001 --weights ./runs/train/yolov5s_results/weights/best.pt --save-txt
```
7. 计算模型的精度和召回率
```shell
python3 ../CCTSDB/evaluate.py
```
以上步骤是使用YOLOv5算法进行交通标志识别的基本流程。需要注意的是,YOLOv5算法需要较高的计算资源,因此在训练和测试时需要使用GPU。
阅读全文