batch_size, channels, height, width
时间: 2024-06-07 07:03:40 浏览: 175
使用keras时input_shape的维度表示问题说明
这些参数通常用于描述图像的维度,其中batch_size指的是每次处理的图像数量,channels表示图像的通道数,height和width分别表示图像的高和宽。以下是一个用到这些参数的CNN模型的例子[^1]:
```python
import torch
import torch.nn as nn
class CNN(nn.Module):
def __init__(self, batch_size, channels, height, width):
super(CNN, self).__init__()
self.conv = nn.Conv2d(channels, 64, kernel_size=3, stride=1, padding=1)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
self.fc = nn.Linear(64 * (height // 2) * (width // 2), 10)
def forward(self, x):
x = self.conv(x)
x = nn.functional.relu(x)
x = self.pool(x)
x = torch.flatten(x, 1)
x = self.fc(x)
return x
```
阅读全文