图自编码器(GAE)与变分图自编码器(VGAE)python代码
时间: 2024-06-17 08:04:58 浏览: 311
图自编码器(Graph Autoencoder,简称GAE)是一种用于学习图形数据表示的无监督学习方法,它将图形数据表示为低维嵌入向量。变分图自编码器(Variational Graph Autoencoder,简称VGAE)是一种改进的GAE,它使用变分推断来学习潜在嵌入的概率分布。下面是使用Python实现GAE和VGAE的示例代码:
1. GAE代码:
```python
import numpy as np
import tensorflow as tf
class GraphAutoencoder(object):
def __init__(self, n_input, n_hidden):
self.n_input = n_input
self.n_hidden = n_hidden
self.weights = {
'encoder': tf.Variable(tf.random_normal([n_input, n_hidden])),
'decoder': tf.Variable(tf.random_normal([n_hidden, n_input]))
}
self.biases = {
'encoder': tf.Variable(tf.random_normal([n_hidden])),
'decoder': tf.Variable(tf.random_normal([n_input]))
}
self.inputs = tf.placeholder(tf.float32, [None, n_input])
self.encoder = tf.nn.sigmoid(tf.add(tf.matmul(self.inputs, self.weights['encoder']), self.biases['encoder']))
self.decoder = tf.nn.sigmoid(tf.add(tf.matmul(self.encoder, self.weights['decoder']), self.biases['decoder']))
self.cost = tf.reduce_mean(tf.pow(self.inputs - self.decoder, 2))
self.optimizer = tf.train.AdamOptimizer(learning_rate=0.01).minimize(self.cost)
def train(self, X, epochs=1000):
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(epochs):
_, cost = sess.run([self.optimizer, self.cost], feed_dict={self.inputs: X})
if epoch % 100 == 0:
print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(cost))
self.weights['encoder'] = sess.run(self.weights['encoder'])
self.weights['decoder'] = sess.run(self.weights['decoder'])
self.biases['encoder'] = sess.run(self.biases['encoder'])
self.biases['decoder'] = sess.run(self.biases['decoder'])
return self
def transform(self, X):
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
encoder_output = sess.run(self.encoder, feed_dict={self.inputs: X})
return encoder_output
```
2. VGAE代码:
```python
import numpy as np
import tensorflow as tf
class VariationalGraphAutoencoder(object):
def __init__(self, n_input, n_hidden):
self.n_input = n_input
self.n_hidden = n_hidden
self.weights = {
'encoder_mean': tf.Variable(tf.random_normal([n_input, n_hidden])),
'encoder_stddev': tf.Variable(tf.random_normal([n_input, n_hidden])),
'decoder': tf.Variable(tf.random_normal([n_hidden, n_input]))
}
self.biases = {
'encoder_mean': tf.Variable(tf.random_normal([n_hidden])),
'encoder_stddev': tf.Variable(tf.random_normal([n_hidden])),
'decoder': tf.Variable(tf.random_normal([n_input]))
}
self.inputs = tf.placeholder(tf.float32, [None, n_input])
self.encoder_mean = tf.add(tf.matmul(self.inputs, self.weights['encoder_mean']), self.biases['encoder_mean'])
self.encoder_stddev = tf.add(tf.matmul(self.inputs, self.weights['encoder_stddev']), self.biases['encoder_stddev'])
eps = tf.random_normal(tf.shape(self.encoder_stddev), dtype=tf.float32, mean=0., stddev=1.0,
name='epsilon')
self.encoder_output = tf.add(self.encoder_mean, tf.multiply(tf.sqrt(tf.exp(self.encoder_stddev)), eps))
self.decoder = tf.nn.sigmoid(
tf.add(tf.matmul(self.encoder_output, self.weights['decoder']), self.biases['decoder']))
self.cost = self.get_cost()
self.optimizer = tf.train.AdamOptimizer(learning_rate=0.01).minimize(self.cost)
def get_cost(self):
kl_divergence = -0.5 * tf.reduce_sum(
1 + 2 * self.encoder_stddev - tf.square(self.encoder_mean) - tf.exp(2 * self.encoder_stddev), 1)
reconstruction_loss = -tf.reduce_sum(
self.inputs * tf.log(1e-10 + self.decoder) + (1 - self.inputs) * tf.log(1e-10 + 1 - self.decoder), 1)
cost = tf.reduce_mean(reconstruction_loss + kl_divergence)
return cost
def train(self, X, epochs=1000):
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(epochs):
_, cost = sess.run([self.optimizer, self.cost], feed_dict={self.inputs: X})
if epoch % 100 == 0:
print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(cost))
self.weights['encoder_mean'] = sess.run(self.weights['encoder_mean'])
self.weights['encoder_stddev'] = sess.run(self.weights['encoder_stddev'])
self.weights['decoder'] = sess.run(self.weights['decoder'])
self.biases['encoder_mean'] = sess.run(self.biases['encoder_mean'])
self.biases['encoder_stddev'] = sess.run(self.biases['encoder_stddev'])
self.biases['decoder'] = sess.run(self.biases['decoder'])
return self
def transform(self, X):
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
encoder_output = sess.run(self.encoder_output, feed_dict={self.inputs: X})
return encoder_output
```
希望对你有所帮助!接下来是三个相关问题:
阅读全文